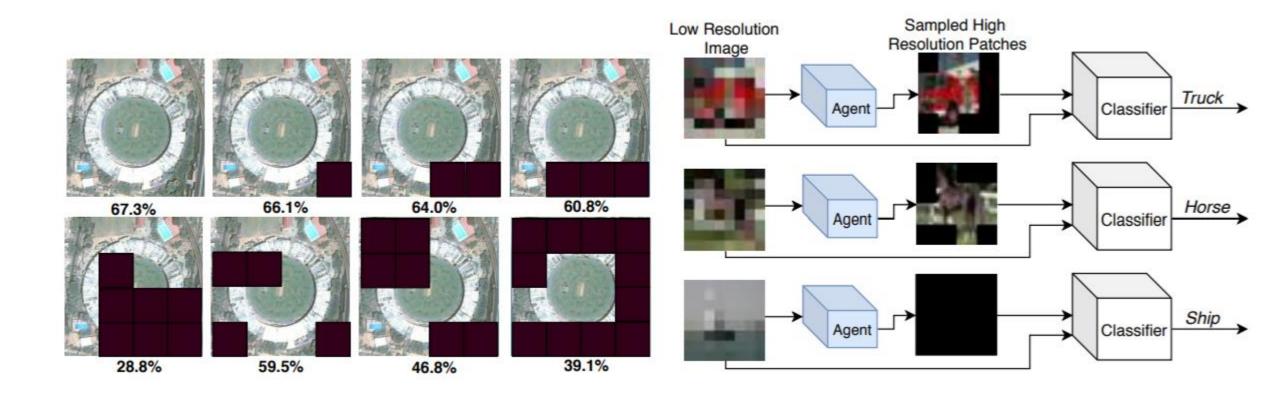
Learning When and Where to Zoom with Deep Reinforcement Learning

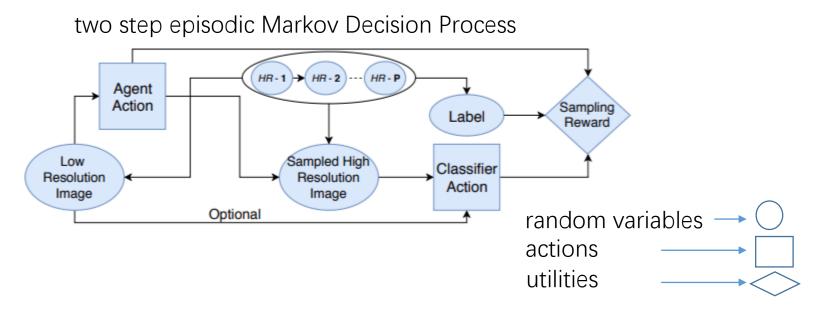
Burak Uzkent Department of Computer Science Stanford University buzkent@cs.stanford.edu Stefano Ermon Department of Computer Science Stanford University ermon@cs.stanford.edu


Outline

- Challenge
 - reed high quality input data to perform well, and the performance drops significantly on degraded
 - > down sampling is often performed for computational and statistical reasons
 - ➤ an adaptive framework can also benefit application domains where acquiring high resolution data is particularly expensive.
 - how to perform this selection automatically and efficiently

Contribution

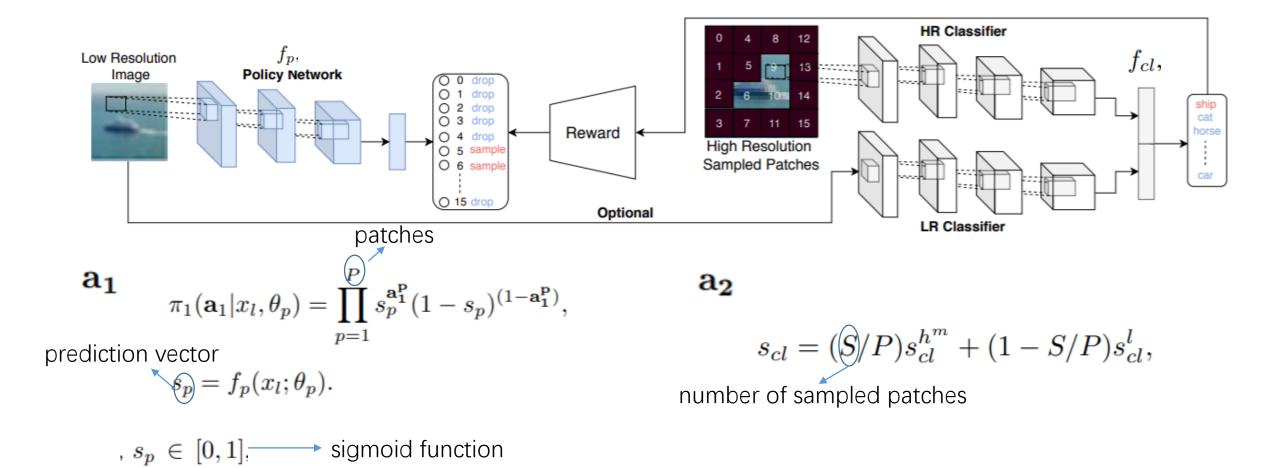
- ➤ we show that we can use only about 40% of full HR images without any significant loss of accuracy——save in the order of 100,000 dollars.
- > PatchDrop performs well on traditional computer vision benchmarks.
- generate hard positive training examples to boost the accuracy of CNNs on ImageNet and fMoW by 2-3%.
- Problem statement and Proposed solution
- Experiments


Background and Motivation

Problem statement

not observed by the agent $x_{h} = (x_{h}^{1}, x_{h}^{2}, \cdots, x_{h}^{P}) \longleftrightarrow x_{l}$ $y \in \{1, \cdots, N\}$ $\mathbf{a}_{1} \in \{0, 1\}^{P}, \longrightarrow \mathbf{a}_{1}^{\mathbf{p}} = 1 \longrightarrow x_{h}^{p}.$ $\pi_{1}(\mathbf{a}_{1}|x_{l}; \theta_{p}) = p(\mathbf{a}_{1}|x_{l}; \theta_{p}),$ masked HR image $x_{h}^{m} = x_{h} \bigodot \mathbf{a}_{1}$

The first step of the MDP $p(x_h, x_h^m, x_l, y, \mathbf{a_1}) = p(x_h)p(y|x_h)p(x_l|x_h)$ $\cdot p(\mathbf{a_1}|x_l; \theta_p)p(x_h^m|\mathbf{a_1}, x_h).$



The second step of the MDP $\mathbf{a_2} \in \{1, \dots, N\}$. $\pi_2(\mathbf{a_2}|x_h^m, x_l; \theta_{cl}) = p(\mathbf{a_2}|x_h^m, x_l; \theta_{cl}),$

$$\max_{\theta_p,\theta_{cl}} \int (\theta_p,\theta_{cl}) = \mathbb{E}_p[R(\mathbf{a_1},\mathbf{a_2},y)],$$

maximizing the expected utility

Proposed Solution

Training

 $heta_p \ heta_{cl}$ **REINFORCE** method $\nabla_{\theta_p} J = \mathbb{E}[R(\mathbf{a_1}, \mathbf{a_2}, y) \nabla_{\theta_p} \log \pi_{\theta_p}(\mathbf{a_1} | x_l)].$ $R(\mathbf{a_1}, \mathbf{a_2}, y) \longrightarrow$ advantage function reduce the variance $\nabla_{\theta_p} J = \mathbb{E}[A\sum_{p=1}^{I} \nabla_{\theta_p} \log(s_p \mathbf{a_1^p} + (1-s_p)(1-\mathbf{a_1^p}))],$ $A(\mathbf{a_1}, \mathbf{\hat{a_1}}, \mathbf{a_2}, \mathbf{\hat{a_2}}) = R(\mathbf{a_1}, \mathbf{a_2}, y) - R(\mathbf{\hat{a_1}}, \mathbf{\hat{a_2}}, y),$

Training

Input: Input($\mathcal{X}_l, \mathcal{Y}, \mathcal{C}$) $\mathcal{X}_l = \{x_l^1, x_l^2, ..., x_l^N\}$ for $k \leftarrow 0$ to K_1 do $s_p \leftarrow f_p(x_l; \theta_p)$ $s_p \leftarrow \alpha + (1 - s_p)(1 - \alpha)$ $\mathbf{a_1} \sim \pi_1(a_1|s_p)$ $x_h^m = x_h \odot \mathbf{a_1}$ $\mathbf{a_2} \leftarrow f_{cl}^h(x_h^m; \theta_{cl}^h)$ Evaluate Reward $R(\mathbf{a_1}, \mathbf{a_2}, y)$ $\theta_p \leftarrow \theta_p + \nabla \theta_p$ end for $k \leftarrow 0$ to K_2 do **Jointly Finetune** θ_{cl}^h and θ_p using f_{cl}^h end for $k \leftarrow 0$ to K_3 do **Jointly Finetune** θ_{cl}^h and θ_p using f_{cl}^h and f_{cl}^l end

Pre-training the Classifier:

Pre-training the Policy Network:

Finetuning the Agent and HR Classifier (Ft-1) :

Finetuning the Agent and HR Classifier (Ft-2) :

Experiment

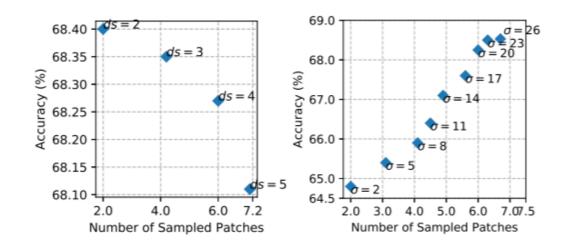
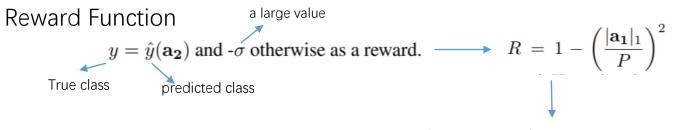
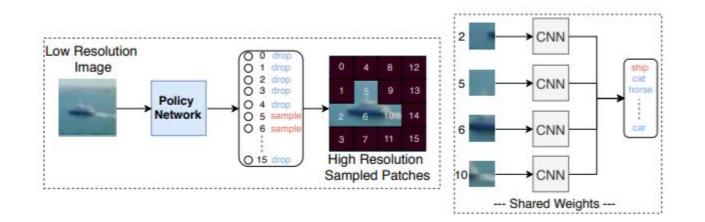




Figure 4: Policies learned on the fMoW dataset. In columns 5 and 8, Ft-2 model does not sample any HR patches and the LR classifier is used. Ft-1 model samples more patches as it does not utilize LR classifier.

Experiment

average number of sampled patches							
	Acc. (%) (Pt)) s	Acc. (%) (Ft-1)	S	Acc. (%) (Ft-2)	S	
LR-CNN	61.4	0	61.4	0	61.4	0	
SRGAN [19]	62.3	0	62.3	0	62.3	0	
KD [40]	63.1	0	63.1	0	63.1	0	
PCN [55]	63.5	0	63.5	0	63.5	0	
HR-CNN	67.3	16	67.3	16	67.3	16	
Fixed-H	47.7	7	63.3	6	64.9	6	
Fixed-V	48.3	7	63.2	6	64.7	6	
Stochastic	29.1	7	57.1	6	63.6	6	
STN [31]	46.5	7	61.8	6	64.8	6	
PatchDrop	53.4	7	67.1	5.9	68.3	5.2	

sample more patches to preserve accuracy


Experiment

	CIFAR10			CIFAR100				ImageNet				
	Acc. (%)	Acc. (%)	Acc. (%)	S	Acc. (%)	Acc. (%)	Acc. (%)	S	Acc. (%)	Acc. (%)	Acc. (%)	S
	(Pt)	(Ft-1)	(Ft-2)	(Pt,Ft-1,Ft-2)	(Pt)	(Ft-1)	(Ft-2)	(Pt,Ft-1,Ft-2)	(Pt)	(Ft-1)	(Ft-2)	(Pt,Ft-1,Ft-2
LR-CNN	75.8	75.8	75.8	0,0,0	55.1	55.1	55.1	0,0,0	58.1	58.1	58.1	0,0,0
SRGAN [19]	78.8	78.8	78.8	0,0,0	56.1	56.1	56.1	0,0,0	63.1	63.1	63.1	0,0,0
KD [40]	81.8	81.8	81.8	0,0,0	61.1	61.1	61.1	0,0,0	62.4	62.4	62.4	0,0,0
PCN [40]	83.3	83.3	83.3	0,0,0	62.6	62.6	62.6	0,0,0	63.9	63.9	63.9	0,0,0
IR-CNN	92.3	92.3	92.3	16,16,16	69.3	69.3	69.3	16,16,16	76.5	76.5	76.5	16,16,16
Fixed-H	71.2	83.8	85.2	9,8,7	48.5	65.8	67.0	9,10,10	48.8	68.6	70.4	10,9,8
ixed-V	64.7	83.4	85.1	9,8,7	46.2	65.5	67.2	9,10,10	48.4	68.4	70.8	10,9,8
tochastic	40.6	82.1	83.7	9,8,7	27.6	63.2	64.8	9,10,10	38.6	66.2	68.4	10,9,8
TN [31]	66.9	85.2	87.1	9,8,7	41.1	64.3	66.4	9,10,10	58.6	69.4	71.4	10,9,8
PatchDrop	80.6	91.9	91.5	8.5,7.9,6.9	57.3	69.3	70.4	9,9.9,9.1	60.2	74.9	76.0	10.1,9.1,7.9

Figure 6: Policies learned on ImageNet. In columns 3 and 8, Ft-2 model does not sample any HR patches and the LR classifier is used. Ft-1 model samples more patches as it does not use the LR classifier.

Experiment decrease the run-time complexity of local CNNs(BagNet)

. .

	Acc. (%) (Pt)	S	Acc. (%) (Ft-1)	S	Run-time. (%) (ms)
BagNet (No Patch Drop) [1]	85.6	16	85.6	16	192
CNN (No Patch Drop)	92.3	16	92.3	16	77
Fixed-H	67.7	10	86.3	9	98
Fixed-V	68.3	10	86.2	9	98
Stochastic	49.1	10	83.1	9	98
STN [19]	67.5	10	86.8	9	112
BagNet (PatchDrop)	77.4	9.5	92.7	8.5	98

	CIFAR10 (%) (ResNet32)	CIFAR100 (%) (ResNet32)	ImageNet (%) (ResNet50)	fMoW (%) (ResNet34)
No Augment.	92.3	69.3	76.5	67.3
CutOut [5]	93.5	70.4	76.5	67.6
PatchDrop	93.9	71.0	78.1	69.6