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Train a small model as high accuracy
as possible (e.g. ResNet50)
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Figure 1. Comparison of training complexity, training time, and
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Figure 2. This figure shows the details of a ResNet equipped with proposed self distillation. (i) A ResNet has been divided into four
sections according to their depth. (ii) Additional bottleneck and fully connected layers are set after each section, which constitutes multiple
classifiers. (iii) All of the classifiers can be utilized independently, with different accuracy and response time. (iv) Each classifier is trained
under three kinds of supervision as depicted. (v) Parts under the dash line can be removed in inference.
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' Experiments---Compared with Standard Training — _——

Five convolutional neural networks:

ResNet, WideResNet , Pyramid , ResNet , ResNeXt , VGG
Two datasets:

CIFAR100, ImageNet

Neural Networks Baseline | Classifier 1/4 | Classifier 2/4 | Classifier3/4 | Classifier 4/4 | Ensemble
VGGI9(BN) 64.47 63.59 67.04 68.03 67.73 68.54
ResNetl8 77.09 67.85 74.57 78.23 78.64 79.67
ResNet50 77.68 68.23 74.21 75.23 80.56 81.04
ResNet101 77.98 69.45 77.29 81.17 81.23 82.03
ResNet152 79.21 68.84 78.72 81.43 81.61 82.29
ResNeXt29-8 81.29 71.15 79.00 81.48 81.51 381.90
WideResNet20-8 79.76 68.85 78.15 30.98 380.92 31.38
WideResNet44-8 79.93 72.54 81.15 381.96 82.09 82.61
WideResNet28-12 80.07 71.21 80.86 81.58 81.59 82.09
PyramidNet101-240 81.12 69.23 78.15 30.98 82.30 83.51

Table 1. Experiments results of accuracy (%) on CIFAR100 (the number marked in red 1s lower than its baseline).
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' Compared with Distillation

Neural Networks | Baseline | Classifier 1/4 | Classifier 2/4 | Classifier 3/4 | Classifier 4/4 | Ensemble
VGGI19(BN) 70.35 42.53 55.85 71.07 72.45 73.03
ResNet18 68.12 41.26 51.94 62.29 69.84 68.93
ResNet50 73.56 43.95 58.47 72.84 75.24 74.73

Table 2. Experiments results of top-1 accuracy (%) on ImageNet (the number marked in red is lower than its baseline).

Teacher Model Student Model Baseline | KD [15] | FitNet [32] | AT [42] | DML [43] | Our approach
ResNet152 ResNetl8 77.09 77.79 78.21 78.54 77.54 78.64
ResNet152 ResNet50 77.68 79.33 30.13 79.35 78.31 80.56

WideResNetd4-8 | WideResNet20-8 79.76 79.80 30.48 80.65 7991 80.92
WideResNetd4-8 | WideResNet28-12 80.07 80.95 80.53 31.46 30.43 81.58

Table 3. Accuracy (%) comparison with traditional distillation on CIFAR100.




' Compared with Deeply Supervised Net

DT ALY | G
UL RORART
Nanjing University of Aeronautics and Astronautics

Neural Networks Method Classifier 1/4 | Classifier 2/4 | Classifier3/4 | Classifier 4/4 | Ensemble
ResNet]8 DSN 67.23 73.80 77.75 78.38 79.27
Our approach 67.85 74.57 78.23 78.64 79.67
ResNet50 DSN 67.87 73.80 74.54 80.27 80.67
Our approach 68.23 74.21 75.23 80.56 81.04
ResNet101 DSN 68.17 75.43 80.98 81.01 81.72
Our approach 69.45 77.29 81.17 81.23 82.03
ResNet]52 DSN 67.60 77.04 81.06 81.35 81.83
Our approach 68.84 78.72 81.43 81.61 82.29

Table 4. Accuracy (%) comparison with deeply supervised net [24] on CIFAR100.

(i) Self distillation outperforms deep supervision in every classifier.
(ii) Shallow classifiers benefit more from self distillation
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The possible explanations of notable performance improvement?
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Figure 3. An intuitive explanation of the difference between flat
and sharp minima [20].
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The possible explanations of notable performance improvement?
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Figure 4. Comparison of training accuracy and loss with increasing Gaussian noise:models trained with self
distillation are more tolerant to noise - flat minima.
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Figure 5. Statistics of layer-wised gradients.
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(c) Classifier 3/4 (d) Classifier 4/4

Figure 6. PCA (principal component analysis) visualization of fea-
ture distribution in four classifiers.
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