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Physical system

• Newton’s second law:

• Elasticity: 

• Damping force: 

• Burgers equation: 



Operator: An operation on a function

• Differential operator:

• gradient operator: 

• Laplace operator:

• CNN:  



x U(x)Neural network:

?



• neural networks: universal approximators of continuous functions
(a space of functions         real numbers) (widely known)

• a NN with a single hidden layer can accurately approximate any nonlinear continuous operator 
(a space of functions         another space of functions) (less known)



DeepONet: learn diverse continuous nonlinear operators



Data generation: 3 input function spaces

• Gaussian random fields
• spectral representations
• formulating the input functions as images

one data point: triplet (u, y, G(u)(y))



Integral operator: 

training dataset are sampled from the 
space of a GRF with the covariance kernel



fractional differential operators: 

*2D Riesz fractional Laplacian

*1D Caputo fractional derivative



Stochastic operators:

• the input of the branch net is a random process instead of a function

• the input of the trunk net contains both physical spaces and random spaces

Karhunen–Loève (KL) expansion: 

*population growth model



convergence rates

• have exponential convergence for small training datasets and then converge with 
polynomial rates

• The transition point depends on the width, and a bigger network has a later transition 
point

*the motion of a gravity pendulum with 
an external force



*nonlinear diffusion-reaction PDE


