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Hard-Exploration Problems

* Sparse-reword problems
* rare feedback

* Deceptive problems
 wrong feedback Goai
* local optima
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reward = distance to goal
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Typical approach: intrinsic motivation (curiosity. novelty-
seeking)

Problems of IM:

1. Detachment : an agent driven by IM could become detached from the
frontiers of high intrinsic reward

2. Derailment : the exploratory mechanisms of the algorithm prevent it from
returning to previously visited states
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1. Intrinsic reward (green) is distributed 2. An IM algorithm might start by exploring
throughout the environment (purple) a nearby area with intrinsic reward

A

Start
3. By chance, it may explore 4. Exploration fails to rediscover
another equally profitable area promising areas it has detached from

[y L@

Figure 1: A hypothetical example of detachment in intrinsic motivation (IM) algorithms.




Most RL algorithms:

* take promising policy, perturb it, hope it
explores further

* most likely breaks policy!

* especially as length, complexity, &
predicsion of sequence increases
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Phase 1: explore until solved Phase 2: robustify

Select state

from archive

Update Run imitation learning
archive on best trajectory

(if necessary)
Go to state Explore
from state

Figure 2: A high-level overview of the Go-Explore algorithm.

Phase 1 : builds up an archive of interestingly different game states, which

III

we call “cells”
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Exploration phase

Probabilistically
—> select state
from archive

S

goto
state

explore
from
state
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Map encountered
states to cells
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archive
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' Phasel - Cell representations

1. Cell representations without domain knowledge

Figure 3: Example cell representation without domain knowledge, which is simply to down-
sample each game frame. The full observable state, a color image, is converted to grayscale and

downscaled to an 11 x 8 image with 8 possible pixel intensities.
2. Cell representations with domain knowledge(easy-to-provide domain knowledge)

Montezuma’ s Revenge : (1) combinations of the x, y position of the agent (2) room number (3)
level number (4) in which rooms the currently-held keys were found

Pitfall: only the x, y position of the agent and the room number were used
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(1) uniformly at random

(2) heuristic : differs depending on the problem, but at a high level,
the heuristics in our work assign a positive weight to each cell that
is higher for cells that are deemed more promising

(1) JEFE AL
The count subscore for each of these attributes is-given by: S g; ggg% 4 5
1 Pa I Brcell i IR KL
CntScore(c,a) = w, - ( ) + &9
v(e,a) + €1
CellScore(c)
NeighScore(c,n) = w, - (1 — HasNeighbor(c,n)) CellProblc) = > ... CellScore(c’)

LSUSZW@ight(C) — 0.1ILfIa:cLe'vel—Leuel(c)

CellScore(c) = LevelWeight(c) - [(Z NeighScore(e, n)) ot (Z CntScore(c, a)) +1




' Phasel - Returning to cells and opportunities to | (g
exploit deterministic simulators

One of the main principles of Go-Explore is to return to a promising cell without
added exploration before exploring from that cell. The easiest way to return to a
cell is if the world is deterministic and resettable

Two different types of problems
(1) require stochasticity at test time only
(2) require stochasticity during both testing and training

For the experiments in this paper, because we harness deterministic
training, we could return to a cell by storing the sequence of actions that
lead to it and subsequently replay those actions




' Phasel - Returning to cells and opportunities to | (g
exploit deterministic simulators

save action-sequence trajectories to cells
* open loop
* no neural network!




Phasel - Exploration from cells

Once a cell is reached, any exploration method can be applied to find
new cells. In this work the agent explores by taking random actions
for k= 100 training frames, with a 95% probability of repeating

the previous action at each training frame

Interestingly, such exploration does not require a neural network or other controller, and indeed no
neural network was used for the exploration phase (Phase 1) in any of the experiments in this paper
(we do not train a neural network until Phase 2). The fact that entirely random exploration works so
well highlights the surprising power of simply returning to promising cells before exploring further,
though we believe exploring intelligently (e.g. via a trained policy) would likely improve our results
and is an interesting avenue for future work.
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The algorithm builds off the popular PPO algorithm. At the heart of
policy-based Go-Explore lies a goal-conditioned policy my(als, g)

the agent will select a goal for the policy according to one of three rules:
(1) with 10% probability, randomly select an adjacent cell

(2) with 22.5% probability, select any adjacent cell, whether already in the
archive or not

(3) in the remaining 67.5% of cases, select a cell from the archive according
to the standard cell-selection weights
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' Policy-based Go-Explore

mini-batch
actor
new episode starts cell reached
N go to cell | i | explore from cell
select cell (map any encountered (map any encountered
states to cells) states to cells)
if episode ends -- when episode ends --
actor
new episode starts cell reached - update
R go to cell | i [explore from cell archive
select cell (map any encountered (map any encountered
. . states to cells) 5tate:5 to cells) u pdate
if episode ends -- when episode ends --{ | |<«—!| model
L]
L ]
[ ]
actor
new episode starts cell reached
N go to cell i,/ explore from cell
select cell (map any encountered {map any encountered
states to cells) states to cells)
if episode ends -- when episode ends --

outerloop inwhichthe‘select’,'go’, and ‘explore’ steps are executed in
synchronized batches. This structure allows policy-based Go-Explore to be
easily combined with popular reinforcement learning algorithms like A3C*°,
PPO* or DQN", whichalready divide data-gathering over many actors.

Extended DataFig. 6| Policy-based Go-Explore overview. Withrespectto
their practicalimplementation, the main difference between policy-based
Go-Explore and Go-Explore when restoring asimulator stateis thatin
policy-based Go-Explore there exist separate actorsthateach haveaninternal
loop switching betweenthe ‘select’, ‘go’, and ‘explore’ steps, rather than one
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Updates in two conditions

1. the agent visits a cell that was not yet in the archive

four associated pieces of metadata

(1) how the agent got to that cell

(2) the state of the environment at the time of discovering the cell
(3) the cumulative score of that trajectory

(4) the length of that trajectory

2. a newly-encountered trajectory is “better” than that belonging to a

cell already in the archive.

notes :

(1) not reset the counter that records the number of times the cell has been visited
(2) not integrated into the trajectories of other cells
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We implemented Phase 1 in parallel to take advantage of multiple CPUs (our experiments ran on a
single machine with 22 CPU cores): at each step, a batch of b cells is selected (with replacement)
according to the rules described in Section 2.1.2 and Appendix A.5, and exploration from each of
these cells proceeds in parallel for each. Besides using the multiple CPUs to run more instances of
the environment, a high b also saves time by recomputing cell selection probabilities less frequently,
which is important as this computation accounts for a significant portion of run time as the archive
gets large (though this latter factor could be mitigated in other ways in the future). Because the size
of b also has an indirect effect on the exploration behavior of Go-Explore (for instance, the initial

state 1s guaranteed to be chosen b times at the very first iteration), it is in effect a hyperparameter,
whose values are given in Appendix A.6.
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' Phase2 - Robustification ok

Creating a policy robust to noise via imitation learning, also called learning
from demonstration (LfD)

Backward Algorithm: It works by starting the agent near the last state in
the trajectory, and then running an ordinary RL algorithm from there (in
this case Proximal Policy Optimization (PPO)
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We introduce stochasticity into the Atari environment with two previously
employed techniques: random no-ops and sticky actions
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' Results
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Figure 4: Performance of the exploration phase of Go-Explore with downscaled frames on
Montezuma’s Revenge. Lines indicating human and the algorithmic state of the art are for compar-
ison, but recall that the Go-Explore scores in this plot are on a deterministic version of the game
(unlike the post-Phase 2 scores presented in this section).

video : https://youtu.be/civ6OOLoR-
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Figure 5: Examples of maximum starting point over training for robustifying using different
numbers of demonstrations. Success is achieved as soon as any of the curves gets sufficiently close
(e.g. within 50 units) to 0, because that means the agent is able to perform as well as at least one of
the demonstrations.
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' Results
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Figure 6: History of progress on Montezuma’s Revenge vs. the version of Go-Explore that does
not harness domain knowledge. Go-Explore significantly improves on the prior state of the art.
These data are presented in tabular form in Appendix A.9.
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Figure 7: Performance on Montezuma’s Revenge of Phase 1 of Go-Explore with and without
domain knowledge. The algorithm finds more rooms, cells, and higher scores with the easily

provided domain knowledge, and does so with a better sample complexity. For (b), we plot the
number of cells found in the no-domain-knowledge runs according to the more intelligent cell

representation from the domain-knowledge run to allow for an equal comparison.
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https://youtu.be/u6_Ng2oFzEY
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Fig.3|Human-normalized performance of the exploration phase and

state-of-the-artalgorithmsonall Atarigames. The exploration phase of

Go-Explore exceeds average human performancein every game, often by

85.5% of these games the trajectories reach scores

higher than those achieved by state-of-the-art reinforcement

learning algorithms




