
Nanjing University of Aeronautics and Astronautics

1. Go-Explore: a New Approach for Hard-Exploration Problems
2. First return, then explore

2

Grand Challenge in RL: Effective Exploration

Hard-Exploration Problems

• Sparse-reword problems
• rare feedback

• Deceptive problems
• wrong feedback
• local optima

reward = distance to goal

3

background

Typical approach: intrinsic motivation (curiosity、novelty-
seeking)

Problems of IM:

1. Detachment : an agent driven by IM could become detached from the
frontiers of high intrinsic reward

2. Derailment : the exploratory mechanisms of the algorithm prevent it from
returning to previously visited states

4

Detachment

5

Derailment

Most RL algorithms:

• take promising policy, perturb it, hope it
explores further

• most likely breaks policy!

• especially as length, complexity, &
predicsion of sequence increases

6

methods

Phase 1 ： builds up an archive of interestingly different game states, which
we call “cells”

7

methods

8

Phase1 - Cell representations

1. Cell representations without domain knowledge

2. Cell representations with domain knowledge(easy-to-provide domain knowledge)

Montezuma’s Revenge ： (1) combinations of the x, y position of the agent (2) room number (3)
level number (4) in which rooms the currently-held keys were found

Pitfall: only the x, y position of the agent and the room number were used

9

Phase1 - Selecting cells

(1) uniformly at random

(2) heuristic : differs depending on the problem , but at a high level,
the heuristics in our work assign a positive weight to each cell that
is higher for cells that are deemed more promising

(1) 选择次数
(2) 访问次数
(3) 选择该位置找到更
好的cell的次数

10

Phase1 - Returning to cells and opportunities to
exploit deterministic simulators

One of the main principles of Go-Explore is to return to a promising cell without
added exploration before exploring from that cell. The easiest way to return to a
cell is if the world is deterministic and resettable

Two different types of problems
(1) require stochasticity at test time only
(2) require stochasticity during both testing and training

For the experiments in this paper, because we harness deterministic
training, we could return to a cell by storing the sequence of actions that
lead to it and subsequently replay those actions

11

Phase1 - Returning to cells and opportunities to
exploit deterministic simulators

12

Phase1 - Exploration from cells

Once a cell is reached, any exploration method can be applied to find
new cells. In this work the agent explores by taking random actions
for k = 100 training frames, with a 95% probability of repeating
the previous action at each training frame

13

Policy-based Go-Explore

The algorithm builds off the popular PPO algorithm. At the heart of
policy-based Go-Explore lies a goal-conditioned policy πθ(a|s, g)

the agent will select a goal for the policy according to one of three rules:
(1) with 10% probability, randomly select an adjacent cell
(2) with 22.5% probability, select any adjacent cell, whether already in the
archive or not
(3) in the remaining 67.5% of cases, select a cell from the archive according
to the standard cell-selection weights

14

Policy-based Go-Explore

15

Phase1 - Updating the archive

Updates in two conditions
1. the agent visits a cell that was not yet in the archive
four associated pieces of metadata
(1) how the agent got to that cell
(2) the state of the environment at the time of discovering the cell
(3) the cumulative score of that trajectory
(4) the length of that trajectory

2. a newly-encountered trajectory is “better” than that belonging to a
cell already in the archive.
notes :
(1) not reset the counter that records the number of times the cell has been visited
(2) not integrated into the trajectories of other cells

16

Phase1 - Batch implementation

17

Phase2 - Robustification

Creating a policy robust to noise via imitation learning, also called learning
from demonstration (LfD)

Backward Algorithm: It works by starting the agent near the last state in
the trajectory, and then running an ordinary RL algorithm from there (in
this case Proximal Policy Optimization (PPO)

18

Additional experimental and analysis details

We introduce stochasticity into the Atari environment with two previously
employed techniques: random no-ops and sticky actions

19

Results

video : https://youtu.be/civ6OOLoR-I

20

Results

21

Results

22

Results

23

Results

https://youtu.be/u6_Ng2oFzEY

24

Results

85.5% of these games the trajectories reach scores
higher than those achieved by state-of-the-art reinforcement
learning algorithms

