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I Motivation
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Deep Imitation Learning requires a large number of expert
demonstrations, which are not always easy to obtain, especially for
complex tasks. However, data augmentation cannot be easily applied to
control tasks due to the sequential nature of the problem.
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I Method

O Imitation using trajectorial data augmentation
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Fig. 1. Example of our proposed method for trajectorial data augmentation.
Top: the original expert trajectory. Middle: the expert trajectory distorted
by noise. The distortion makes the trajectory unsuccessful. This result is
not guaranteed, therefore this augmentation is unlabelled. Bottom: our
correction network modifies the unlabelled augmentation to produce a
successful trajectory, different from the expert.
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Fig. 2. Flow chart of our system, which performs imitation using trajec-
torial data augmentation. Stage 1 presents data augmentation by correcting
distorted trajectories, while stage 2 presents data augmented imitation.
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O Stagel : Corrected Augmentation for Trajectories (CAT)

Noisa Algorithm 1: Corrected Augmentation for Trajecto-
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.l | Input: Set of expert trajectories Tg, regularisation A
- - noise o, initial policy ¢g and discriminator

ug, N number of perturbed action sequences.
Expert dataset // produce randomly perturbed augmented
action sequences Q
1Q={
2 for each 7 in 7T do
» 3 Generate N perturbed action sequences
Corrected actions v Q' ={q1,...,qn} from 75 according to II
Expert 4 Q9=99"
Discriminator 5 end
reward D // correct augmented trajectories so they are
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Fig. 3. Detailed overview of stage 1, which performs Corrected Augmenta-
tion For Trajectories. The architecture is semi-supervised since it is guided 10 end
by unlabelled distorted actions.
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I Method
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O Stage? : Data Augmented Generative Imitation (DAugGI)
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Fig. 4. Detailed overview of stage 2, which performs Data Augmented
Generative Imitation, including the success filtering mechanism.
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I Experiments : CAT Evaluation
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CAT EVALUATION AND DATASET DIVERSITY

CAT Success % Dataset Diversity score dtw,,

Random Corrected| | CAT | DAugGI  GAIL
Task : : — — —
Aug/tion Aug/tion | | original | original original
HalfCheetah 0.7 97.6 0.54 0.68 0.73
Inv. Pendulum 4 100 0.91 1.13 1.11
Door 21 56 1.11 0.26 0.25
Pen 58 46 0.93 1.12 1.06
Hammer 62 63 1.00 0.26 0.24
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I Experiments : DAugGI Evaluation
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Fig. 5. a) Performance results of various tasks at different training steps. It includes easier OpenAl tasks (HalfCheetah and InvertedPendulum) with
3 experts, as well as more challenging dexterous manipulation tasks (Door, Hammer, Pen) with 25 experts. DAugGI is trained using the augmented
CAT trajectories and generally outperforms GAIL, trained with the original limited trajectories. b) Ablation studies with different number of experts for
HalfCheetah and Door tasks. DAugGI consistently outperforms GAIL, especially when the expert dataset is limited.
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I Motivation

Humans can abstract prior knowledge from very little data and use it to
boost skill learning.

Discover routines composed of primitive actions from a single
demonstration and use discovered routines to augment policy learning
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focus on MDPs with high-dimensional states and discrete actions

I Method

O Routine-Augmented Policy Learning (RAPL)

(a) routine discovery

one demonstration —
routine library
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(b1) routine-augmented imitation (b2) routine-augmented RL

routine pP : a sequence of
primitive actions (a'",at®,....allP))

primitive-level imitation routine-guided exploration
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primitive-level value update

5 P1 7 V(so) ~ 1+ yv(sy)

@% % routine-level value update
@ v(sg) ~ 1y +yr+ yzv(sz)

10/18



I Method

O Part 1: Routine Discovery

Phase 1 : Routine Proposal

Action Sequence abcdbcabed
Sequitur |Algorithm

[Nevill-Manning qnd Witten 1997]

M S->CAC

Grammer A->bc

C->aAd
Transfer non-tefminal symbols to

routlines
. . A:bc
Routine Candidates Cobed

Identifying Hierarchical Structure in Sequences: A linear-time algorithm

Phase 2 : Routine Selection

Routine Candidates

Compute scores|of each routine

f(p) + Nength| )

f(p) : the occurrence time of one routine pin the
demonstrated action sequence

o] : routine length \

Select K best routines



I Method

O Part 2 : Routine Policy Learning

RAPL-SQIL : using routines o augment imitation learning
Idea : imitate the expert's experiences at multiple temporal scales.
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Dyim : the experience from primitive-level demonstration. (s:;asi11)
Drouine + The demonstration explained by the abstracted routines. (s:.r;s:i0)
Dampe: the experiences collected via interaction with the environments.

SQIL: Imitation Learning via Regularized Behavioral Cloning



I Method

O Part 2 : Routine Policy Learning

RAPL-A2C : using routines to augment reinforcement learning

Idea : conduct value approximation and policy optimization at multiple
temporal scales.
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Asynchronous Methods for Deep Reinforcement Learning



I Experiments : RAPL-SQIL

Table 1: Comparing with several imitation learning baselines
on 33 Atari games. We shown both alignment scores (defined
in Eq. 10) and mean of human-normalized scores (Mnih
et al. 2015) which indicates the alignment performance with
regarding to the demonstration. Each number in the table is
averaged over five random seeds.

Alignment (£ std)

Mean (= std)

BC 0.18 (£ 0.03) 18.3% (2.1%)
GAIL 0.16 (£ 0.08) 26.4% (1.6%)
SQIL 0.28 (£ 0.07) 29.4% (3.2%)
RAPL-SOIL 0.34 (£ 0.07) 36.1% (£ 3.6%)

(10)

tq + The demonstrated action trajectory
t+ + tThe action trajectory produced by the trained agent

D : Levenshtein distance
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Experiments : RAPL-A2C
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Figure 3: Training curves on eight randomly selected Atari games in comparison with several RL baselines. We plot both the
mean and standard deviation in those curves across five agents with random seeds.

CompILE: Compositional Imitation Learning and Execution 15/18
The Option-Critic Architecture



Experiments : RAPL-A2C
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Figure 2: Relative performance of RAPL-A2C over A2C
on Atari. Denote Sg as the score of RAPL-A2C and S 4 is
the score of A2C. The relative performance is calculated by
(Sr — Sa)/|Sa| x 100%. Each number is averaged over
five random agents and we also plot the stand error of the
numbers.
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Via one routine: [Jump, Jump, Right, Right, Right, Jump]
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I Experiments : Effectiveness of Routine Discovery

o]
o
1

)
o
———

B
o
——
——

N
o
1

% avg relative performance over A2C

o
1

}

Full RR PbE RF ID RP

Figure 6: Comparison of ablated routine discovery models
on Atari games. Mean and standard error over five random
agents are shown in the figure.

(1) Random Routines (RR):each routine is
generated randomly;

(2) proposal by Enumeration (PbE):enumerate
all the possible combinations of primitive
actions to form routine candidates.

(3) Random Fetch (RF):random fetch sub-
sequences from the demonstration to form
routines.

(4) Imperfect Demonstration (ID):the expert
is only trained with 1 million steps.

(5) Repeat (RP):the routines are the
repetition of most frequently used atomic
actions in the demonstration
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