
A brief introduction to

imitation learning
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Reinforcement Learning

Reinforcement learning (RL):

Aim to finding optimal strategies through interaction with the environment
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The interaction process can be modeled as MDP



Reinforcement Learning
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episode/trajectory

horizon



Cons of RL
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⚫ RL requires a large amount of samples. (data inefficient)
⚫ It's hard to design proper reward function for each particular task.

⚫ However, it is usually esay to obtain expert-level demonstrations

Episodic Reinforcement Learning with Associative Memory. Guangxiang Zhu*,Zichuan Lin*, Guangwen Yang, Chongjie Zhang



Imitation Learning
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⚫ problem setting
⚫ Learner is given samples of trajectories from the expert
⚫ Learner can interact with envrioment, but can't get reinforcement signal of 

any kind,which can be modeled as MDP/R
⚫ objective: 

⚫ Application
⚫ Warmup for RL (e.g.  AlphaGo )
⚫ When it's hard to define reward function (e.g.  Self-driving cars)



Methods of IL
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⚫ Behavior Cloning (BC)
⚫ Inverse Reinforcement Learning (IRL)
⚫ Adversarial Structured Imitation Leaning

Boyuan Zheng, Sunny Verma. Imitation Learning: Progress, Taxonomies and Opportunities. arXiv preprint arXiv:2106.12177



Behavior Cloning
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sample label

⚫ mimic by matching actions distribution with  supervised learning method

treat demonstrations
as i.i.d (s,a) pairs 

Osa, Takayuki et al. (2018). “An Algorithmic Perspective on Imitation Learning”. In: Foundations and Trends in Robotics 7.1-2, pp. 1–179.



Behavior Cloning
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⚫ In the simplest case, BC learn a policy to minimize the KL divergence

⚫ In practice, we optimize the objective with finite samples

⚫ For discrete action spaces, it reduces to learn a classifier
⚫ For continuous action spaces, it reduces to learn a regressor

Xu, Tian & Li, Ziniu & Yu, Yang. (2020). Error Bounds of Imitating Policies and Environments.  NIPS, 2020



Behavior Cloning
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⚫ some papers
⚫ Alvinn: An autonomous land vehicle in a neural network. 1989
⚫ DAVE-2: Bojarski M ,  Testa D D , Dworakowski D , et al. End to End Learning for 

Self-Driving Cars.  2016.
⚫ DAgger: Stéphane Ross, Geoffrey J. Gordon, and Drew Bagnell. A reduction of 

imitation learning and structured prediction to no-regret online learning. In 
Proceedings of the 14th InternationalConference on Artificial Intelligence and 
Statistics (AISTATS’11), pages 627–635, 2011.

⚫ DAgger by coaching：He He, Hal Daumé, III, and Jason Eisner. Imitation 
learning by coaching. In Proceedings of the 25th International Conference on 
Neural Information Processing Systems - Volume 2, NIPS?12, pages 3149?3157, 
USA, 2012. Curran Associates Inc.

⚫ AggreVaT：Stéphane Ross and J. Andrew Bagnell. Reinforcement and imitation 
learning via interactive no-regret learning. CoRR, abs/1406.5979, 2014.
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Alvinn
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⚫ use a 3-layer back-propagation network
⚫ Train the network by having it observe live sensor data as a human drives the 

vehicle



Alvinn
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⚫ Loss 
⚫ fit a Gaussian to the network's output vector.
⚫ Measure distance between Gaussian's peak and human steering direction.



Alvinn
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⚫ Learning to Correct Steering Errors
⚫ If the human drives perfectly, the network never learns to make corrections

when it drifts off the desired track
⚫ Crude solution

⚫ Turn learning off temporarily, and drive off course.
⚫ Turn learning back on, and let the network observe the human making 

the necessary corrections.
⚫ Repeat



Alvinn
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⚫ Simulating the Steering Errors
⚫ Let humans drive as best they can.
⚫ Increase training set variety by artificially shifting and rotating the video 

images, so that the vehicle appears at different orientations relative to the 
road.

⚫ Generate 14 random shift/rotations for each image.
⚫ A simple steering model is used to predict how a human driver would react 

to each transformation



Alvinn
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⚫ After a long right turn, the network will be biased toward turning right, since recent      
training data focused on right turns

⚫ Balanced Training Images：Keep a buffer of 200 training images. Replace 15 old 
exemplars with new ones derived from the current camera image. Replacement 
strategies:

⚫ Replace the image with the lowest error
⚫ Replace the image with the closest steering direction

⚫ Online training details 
1. Take current camera image plus 14 shifted/rotated variants, each with 

computed steering direction.
2. Replace 15 old exemplars in the 200 element training exemplar buffer 

with these 15 new ones.
3. Perform one epoch of backpropagation learning on the training exemplar 

buffer.
4. Repeat steps 1-3 until the network's predicted steering direction reliably 

matches the person's steering direction.
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DAVE-2

17/57

⚫ Overview of the DAVE-2 System

⚫ We represent the steering command as 1/r to make our system 
independent of the car geometry, where r is the turning radius in meters. 

⚫ We use 1/r instead of r to prevent a singularity when driving straight (the 
turning radius for driving straight is infinity).



DAVE-2
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⚫ Training data was collected by driving on a wide variety of roads and in a diverse set 
of lighting and weather conditions

⚫ Training with data from only the human driver is not sufficient. The network must 
learn how to recover from mistakes.

⚫ The left and the right camera —> Images for two specific off-center shifts
⚫ viewpoint transformation of the image from the nearest camera —> Additional 

shifts between the cameras 
⚫ The steering label for transformed images is adjusted to one that would steer 

the vehicle back to the desired location and orientation in two seconds.



DAVE-2
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⚫ Network Architecture

hard-coded and not adjusted 
in the learning process

feature extraction

as a controller for steering



DAVE-2
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⚫ Training with three cameras

⚫ Testing with center cameras MSE loss



DAVE-2
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⚫ Simulation & on-road test

⚫ When the off-center distance exceeds one meter, a virtual human intervention is 
triggered to do interventions. We estimate what percentage of the time the 
network could drive the car (autonomy)

⚫ After a trained network has demonstrated good performance in the simulator, the 
network is loaded on the test car and taken out for a road test. For a typical drive, 
we are autonomous approximately 98% of the time.



Problem of BC 
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⚫ There are three common problems with supervised imitation learning
1. copies unnecessay action (SL take all errors equally)
2. compounding error because of fit single-timestep decisions
3. mismatch/covriate shift (not satisfy the i.i.d assumption) 
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DAgger
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⚫ DAgger attempts to collect expert demonstrations under the state distribution 
induced by the learned policy.

⚫ It can be seen most naturally as an on-policy to imitation learning: the expert provides 
the correct actions to take, but the input distribution of examples comes from the 
learner’s own behavior.

Osa, Takayuki et al. (2018). “An Algorithmic Perspective on Imitation Learning”. In: Foundations and Trends in Robotics 7.1-2, pp. 1–179.



DAgger
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⚫ The general DAGGER algorithm.

⚫ We typically use                                               or                            , optionally allowing the 
algorithm queries the expert to choose controls for a fraction of the time to better 
leverage the presence of the expert

⚫ in general， be a sequence such that 

human or other 
algorithmoffline



DAgger
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⚫ This algorithm can be interpreted as a Follow-The-Leader algorithm that at 
each iteration we pick the best policy under all trajectories seen so far over 
the iterations.

⚫ As a special case of FTL, DAgger enjoys the property of being no-regret



DAgger
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human expert 
training laps are all very similar

Super Tux Kart Super Mario Bros

expert is a planning algorithm which 
hacked the game  



DAgger

28/57Attia A , Dayan S . Global overview of Imitation Learning. 2018. arXiv preprint arXiv:arXiv:1801.06503

⚫ Assuming l(s, π) is the 0-1 loss (or upper bound on the 0-1 loss) implies the 
following performance guarantee with respect to any task reward function C 
bounded in [0, 1]:



Summary of BC

⚫ Advantages

1. easy to implement

2. efficient and stable to train

⚫ Disadvantage

1. distribution mistmatch

2. compounding error
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⚫ When to use

1. 1-step deviation not too bad

2. expert episodes cover state space

⚫ When not to use

1. 1-step deviation lead to catastrophic error

2. optimze long-term objective



Summary of BC
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⚫ other problem setting ?
⚫ Using ambiguous demonstration data to imitate learning, thus reducing the cost 

of collecting demonstration
⚫ ...



Inverse RL
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⚫ The idea is to learn the optimal reward function that can explain the expert's 
behavior most appropriately

RL

IRL
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⚫ However, since a policy can be optimal for multiple reward functions, the problem 
of determining the reward function is “ill-posed”

⚫ To obtain the unique solution,  many studies have proposed additional objective 
functions to be optimized

⚫ maximize the margin
⚫ maximize the entropy
⚫ ....

Inverse RL
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⚫ some papers
⚫ ALVIL: P. Abbeel and A. Y. Ng. Apprenticeship learning via inverse reinforcement 

learning. In Proceedings of the international conference on Machine learning 
(ICML), 2004.

⚫ MaxEnt: B. D. Ziebart, A. Maas, J. A. Bagnell, and A. K. Dey. Maximum entropy 
inverse reinforcement learning. In Proceedings of the Twenty-Second 
Con_x0002_ference on Artificial Intelligence (AAAI), pages 1433–1438, 2008.

⚫ MaxCausalEnt: B. D. Ziebart, J. A. Bagnell, and A. K. Dey. Modeling interaction via 
the principle of maximum causal entropy. in Proc. of International Conference on 
Machine Learning, Haifa, Israel, 2010.

⚫ N. D. Ratliff, J. A. Bagnell, and M. A. Zinkevich. Maximum margin planning. In 
Proceedings of the international conference on Machine learning (ICML), pages 
729–736, 2006b.

⚫ Guided cost learning: Chelsea Finn, Sergey Levine, and Pieter Abbeel. 2016. 
Guided cost learning: deep inverse optimal control via policy optimization. In 
Proceedings of the 33rd International Conference on International Conference on 
Machine Learning - Volume 48 (ICML'16). JMLR.org, 49–58.

⚫ Boularias, A., Kober, J., and Peters, J. Relative entropy inverse reinforcement 
learning. In International Conference on Artificial Intelligence and Statistics 
(AISTATS), 2011.

Inverse RL
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ALVIL
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⚫ finite state MDP , the reward function assume to be bounded

in absolute value by 1

⚫ features mapping function:

⚫ feature vector:

⚫ feature expectations:

⚫ assume there is some “true” reward function: , In

order to ensure that the rewards are bounded by 1, we also assume

⚫

⚫

⚫



ALVIL
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⚫ if we have found some set of policies , we can mix them to get a

new policy

⚫ At the start of a trajectory, choose one policy with probability , then we

always acts according to the selected policy until trajectory end

⚫ the feature expectations of the mixed policy is

⚫ Use demonstration data to estimate the expert’s feature

expectations



ALVIL
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⚫ to find a policy whose performance is close to expert’s on the unknown reward

function, just need to find a policy such that

gap of policy value

gap of  feature expection



ALVIL
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ALVIL
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⚫ min: fix reward function as , find a policy (by RL) to minimize the

gap of feature expection

⚫ max: fix policy, find parameter (i.e. reward function) to maximize te gap

of policy value

margin of policy value

⚫ The key idea is to match the feature expectations (FEM), and then use additional 
objective functions (max margin here) to deal with the “ill-posed” problem
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MaxEnt
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⚫ Objective: maximize the the entropy of trajectory distribution under the condition 
of feature matching

⚫ choose the distribution that does not exhibit any additional preferences beyond 
matching feature expectations 



MaxEnt
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⚫ for Deterministic MDP

⚫ for Non-Deterministic MDP, paths are determined by the action choices of the 
agent and the random outcomes of the MDP

⚫ Stochastic Policy 

transition distribution

deterministic transition



MaxEnt
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⚫ Maximizing the entropy of the distribution over paths subject to the feature 
constraints from observed data implies that we maximize the likelihood of the 
observed data under the maximum entropy (exponential family) distribution 
derived above

state visitation frequencies

CS 285: Lecture 20, Inverse Reinforcement Learning, Part 2  https://www.youtube.com/watch?v=82Sr9YqeQNc 



MaxCausalEnt
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⚫ MaxCausalEnt: B. D. Ziebart, J. A. Bagnell, and A. K. Dey. Modeling interaction 
via the principle of maximum causal entropy. in Proc. of International 
Conference on Machine Learning, Haifa, Israel, 2010.



Summary of IRL
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⚫ advantages: 
1. does not need interactive expert
2. very efficient when trained (in some cases can outperform the demonstrator)
3. has long-term planning

⚫ disadvantages: 
1. can be difficult to train

⚫ use when: 
1. an interactive expert is not available
2. it might be easier to learn the reward functions than the expert‘s policy
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GAIL
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⚫ IRL methods aim to recover the expert's cost function and then extract a policy from 
that cost function with reinforcement learning. This approach is indirect and can be 
slow

⚫ We propose a new general framework for directly extracting a policy from data, as if 
it were obtained by reinforcement learning following inverse reinforcement learning

⚫ IRL: 



GAIL
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⚫ IRL methods aim to recover the expert's cost function and then extract a policy from 
that cost function with reinforcement learning. This approach is indirect and can be 
slow

⚫ We propose a new general framework for directly extracting a policy from data, as if 
it were obtained by reinforcement learning following inverse reinforcement learning

⚫ general form of IRL: 



GAIL
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⚫ in case of overfit, we incorporate a (closed, proper) convex cost function regularizer 
into our study, it must be convex as a function defined on all of

⚫ one-to-one correspondence between policy set and occupancy measures set

distribution of starting states



GAIL
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⚫ for a function    , its convex conjugate is

a
1

a
2

b1 b2

Summing both sides over all s and a shows that



GAIL
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GAIL
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凹凸



GAIL
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⚫ Proposition 3.2 tells us that      -regularized inverse reinforcement learning, implicitly, 
seeks a policy whose occupancy measure is close to the expert's, as measured by the 
convex function 

⚫ conclusion
⚫ IRL is a dual of an occupancy measure matching problem
⚫ The induced optimal policy is the primal optimum

⚫ Enticingly, this suggests that various settings of       lead to various imitation learning 
algorithms that directly solve the optimization problem given by Proposition 3.2

⚫

⚫ apprenticeship learning：



GAIL
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⚫ Generative adversarial imitation learning



GAIL
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GAIL
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RL platform

https://github.com/wxc971231/RL_Platform-CrossTheWall


