A brief introduction to
imitation learning



Reinforcement Learning

Reinforcement learning (RL):

Aim to finding optimal strategies through interaction with the environment

n(als)
|
Lg—observe Agent
‘ rﬂ
State Reward Action
St r dat

|
L:‘_ rt+1
:4— St+1

P(s'|s,a)
R(s,a)

The interaction process can be modeled as MDP < §, A, R, P,~, (D) >
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Reinforcement Learning
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Cons of RL
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e RLrequires a large amount of samples. (data inefficient)
e It's hard to design proper reward function for each particular task.

o However, it is usually esay to obtain expert-level demonstrations

Episodic Reinforcement Learning with Associative Memory. Guangxiang Zhu*,Zichuan Lin*, Guangwen Yang, Chongjie Zhang 4/5 7



Imitation Learning

demonstrations
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e problem setting
e Learneris given samples of trajectories from the expert

e Learner can interact with envrioment, but can't get reinforcement signal of
any kind,which can be modeled as MDP/R
o oObjective: max V"™ < min[V™ — V7]
™ m

e Application
e Warmup for RL (e.g. AlphaGo)
e When it's hard to define reward function (e.g. Self-driving cars)
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Methods of IL (A
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e Behavior Cloning (BC)
e Inverse Reinforcement Learning (IRL)
e Adversarial Structured Imitation Leaning
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Boyuan Zheng, Sunny Verma. Imitation Learning: Progress, Taxonomies and Opportunities. arXiv preprint arXiv:2106.12177 6/5 7
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Behavior Cloning

S
£

e mimic by matching actions distribution with supervised learning method

D= {m,m,...},7 = {(s1,a1), (s2,a2),...}

S1 aq

§2 a2 .

s 4 treat demonstrations
3 3 as i.i.d (s,a) pairs

S4 a4

sample label

Algorithm 1 Abstract of behavioral cloning

Collect a set of trajectories demonstrated by the expert D
Select a policy representation g

Select an objective function £

Optimize £ w.r.t. the policy parameter 8 using D
return optimized policy parameters 6

Osa, Takayuki et al. (2018). “An Algorithmic Perspective on Imitation Learning” . In: Foundations and Trends in Robotics 7.1-2, pp. 1-179. 7/5 7



Behavior Cloning

i)
(s

e Inthe simplest case, BC learn a policy to minimize the KL divergence

, g (als)
min Esq, \Drr(me(-[8), 7(-[5))] := Esa)~p, [lﬂg(m)]
e In practice, we optimize the objective with finite samples

max > log(m(als)).

mell (SJG)ETE

o For discrete action spaces, it reduces to learn a classifier
e For continuous action spaces, it reduces to learn a regressor

Xu, Tian & Li, Ziniu & Yu, Yang. (2020). Error Bounds of Imitating Policies and Environments. NIPS, 2020 8/5 7



Behavior Cloning

e SOMe papers

Alvinn: An autonomous land vehicle in a neural network. 1989

DAVE-2: Bojarski M, Testa D D, Dworakowski D, et al. End to End Learning for
Self-Driving Cars. 2016.

DAgger: Stéphane Ross, Geoffrey J. Gordon, and Drew Bagnell. A reduction of
imitation learning and structured prediction to no-regret online learning. In
Proceedings of the 14th InternationalConference on Artificial Intelligence and
Statistics (AISTATS’11), pages 627—635, 2011.

DAgger by coaching: He He, Hal Daumé, lll, and Jason Eisner. Imitation
learning by coaching. In Proceedings of the 25th International Conference on
Neural Information Processing Systems - Volume 2, NIPS?12, pages 314973157,
USA, 2012. Curran Associates Inc.

AggreVaT: Stéphane Ross and J. Andrew Bagnell. Reinforcement and imitation
learning via interactive no-regret learning. CoRR, abs/1406.5979, 2014.
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ALVINN:
An Autonomous Land Vehicle In a
Neural Network

Dean A. Pomerleau
January 1989
CMU-CS-89-107-



e use a 3-layer back-propagation network
e Train the network by having it observe live sensor data as a human drives the

30x32 Sensor
Input Retina
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Loss
[ ]

fit a Gaussian to the network's output vector.
Measure distance between Gaussian's peak and human steering direction.

Network’s Steering
Error = ~3.5 units

Gaussian Peak =

Person’s Steering Network Steering
Direction Direction

e . " BestFi
L. / Gaussian

T 15 T30
Output Unit

&
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Learning to Correct Steering Errors
o If the human drives perfectly, the network never learns to make corrections
when it drifts off the desired track
e Crude solution
e Turn learning off temporarily, and drive off course.

e Turn learning back on, and let the network observe the human making
the necessary corrections.
o Repeat
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o Simulating the Steering Errors

e Let humans drive as best they can.

e Increase training set variety by artificially shifting and rotating the video
images, so that the vehicle appears at different orientations relative to the

road.

e Generate 14 random shift/rotations for each image.

e Asimple steering model is used to predict how a human driver would react

to each transformation

Original Image

ddAd-ANN

/
h

d - "N\ N
NIN-oll 4l 4

offset distance
offset angle

lookahead distance "

person's steering radi




o After a long right turn, the network will be biased toward turning right, since recent
training data focused on right turns

o Balanced Training Images: Keep a buffer of 200 training images. Replace 15 old
exemplars with new ones derived from the current camera image. Replacement
strategies:

o Replace the image with the lowest error
o Replace the image with the closest steering direction

e Online training details
1. Take current camera image plus 14 shifted/rotated variants, each with
computed steering direction.

2. Replace 15 old exemplars in the 200 element training exemplar buffer
with these 15 new ones.

3. Perform one epoch of backpropagation learning on the training exemplar
buffer.

4. Repeat steps 1-3 until the network's predicted steering direction reliably
matches the person's steering direction.
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e Overview of the DAVE-2 System

[ Left camera ] [Centercamera] [Rightcamela

Steering wheel angle
(via CAN bus)

External solid-state
drive for data storage

NVIDIA DRIVE™ PX

Figure 1: High-level view of the data collection system.

e We represent the steering command as 1/r to make our system
independent of the car geometry, where r is the turning radius in meters.

e We use 1/r instead of r to prevent a singularity when driving straight (the
turning radius for driving straight is infinity).
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e Training data was collected by driving on a wide variety of roads and in a diverse set
of lighting and weather conditions
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e Training with data from only the human driver is not sufficient. The network must
learn how to recover from mistakes.

The left and the right camera —> Images for two specific off-center shifts
viewpoint transformation of the image from the nearest camera —> Additional
shifts between the cameras

The steering label for transformed images is adjusted to one that would steer
the vehicle back to the desired location and orientation in two seconds.
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e Network Architecture

Qutput: vehicle control

Fully-connected layer

Fully-connected layer as a controller for steering
Fully-connected layer

Convolutional
feature map
64@1x18

J

3x3 kernel .
Convolutional

feature map
64@3x20

ki |
EXAloNe Convolutional

feature map

48@5%22 > feature extraction

5x5 kernel

Convolutional
feature map
36@14x47

5x5 kernel

Convolutional
feature map

24@31x98 /
Normalized hard-coded and not adjusted

input planes _— > 3 .
3@66x200 in the learning process

Input planes

3@66x200 1 9 / 5 7
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Training with three cameras

Recorded
steering
wheel angle | Adjust for shift Desired steering command
and rotation
Left camera
. ~ -
Random shift
LCenter camera ‘.—: and rotation
Right camera
o Testing with center cameras MSE loss
Network
computed
steering
| command | Drive by wire
[Center camra]—r CNN ™ interface
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e Simulation & on-road test

»| Shift and rotate > CNN ]
Synthesized
s image of road as
_ ) would be seen from
Library of recorded test simulated vehicle Network
routes: videos and time- computed
synchronized steering steering
commands Update car command
position and (e
orientation

When the off-center distance exceeds one meter, a virtual human intervention is
triggered to do interventions. We estimate what percentage of the time the
network could drive the car (autonomy)

(number of interventions) - 6 seconds
elapsed time [seconds]

autonomy = (1 — ) - 100

After a trained network has demonstrated good performance in the simulator, the
network is loaded on the test car and taken out for a road test. For a typical drive,
we are autonomous approximately 98% of the time.



Problem of BC

i)
(s

e There are three common problems with supervised imitation learning
1. copies unnecessay action (SL take all errors equally)
2. compounding error because of fit single-timestep decisions
3. mismatch/covriate shift (not satisfy the i.i.d assumption)

— training trajectory
— 7y expected trajectory

Fral01) mo(a¢|or)

Pdata (Ol, )

— training trajectory
— 7y expected trajectory

P(s,a) = P(a|s)P(s)
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A Reduction of Imitation Learning and Structured Prediction
to No-Regret Online Learning

Stéphane Ross Geoffrey J. Gordon J. Andrew Bagnell
Robotics Institute Machine Learning Department Robotics Institute
Carnegie Mellon University Carnegie Mellon University Carnegie Mellon University
Pittsburgh, PA 15213, USA Pittsburgh, PA 15213, USA Pittsburgh, PA 15213, USA
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o DAgger attempts to collect expert demonstrations under the state distribution
induced by the learned policy.

e It can be seen most naturally as an on-policy to imitation learning: the expert provides
the correct actions to take, but the input distribution of examples comes from the
learner’s own behavior.

Expert trajectory
Learned Policy
—
>< *- Execute 7, and query expert New data
Steering
No data on / P from expert ‘-(-('%\
--- -5 = =

how to recover

— :;::;:; N

o, P )
~ '-*-s-)-"

Aggregate

dataset All previous data
‘New pohcy « % @
—— J

Supervised learning

Osa, Takayuki et al. (2018). “An Algorithmic Perspective on Imitation Learning” . In: Foundations and Trends in Robotics 7.1-2, pp. 1-179. 24/5 7
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e The general DAGGER algorithm.

Initialize D « 0.

Initialize 77y to any policy in II.

for i =1to N do
Let m; = ,Bt'ﬂ'* + (1 — ,Bz)’ﬁ'z
Sample T'-step trajectories using ;.
Get dataset D; = {(s,7*(s))} of visited states by m;
and actions given by|expert.
Aggregate datasets: D «— D |J D;.
Train classifier ;41 on D.

end for

Return best 7; on validation.

human or other
algorithm

offline ——

o Wetypicallyuse p,=1,5=p" '(: >=2) or 3, = I(i = 1) , optionally allowing the
algorithm queries the expert to choose controls for a fraction of the time to better

leverage the presence of the expert
N

: A 1
e ingeneral, {f3;} beasequencesuchthat Sy = = > Bi—0as N—0

i=1
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This algorithm can be interpreted as a Follow-The-Leader algorithm that at
each iteration we pick the best policy under all trajectories seen so far over
the iterations.

As a special case of FTL, DAgger enjoys the property of being no-regret

1 1 &
E;ffi(ﬂ) _i]:gﬂlﬁzlgi(ﬂ) <IN

lim vy =0

N—oo
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e J() the expected total reward of trajectories starting with the initial state /

de = 231:1 d! the empirical mean of state distribution induced over each time step
C=(s) = Eqr(s)[R(s, a)] the total reward in a T-step trajectory
I(s, ) the observed surrogate loss

e Assuming I(s, i) is the 0-1 loss (or upper bound on the 0-1 loss) implies the

following performance guarantee with respect to any task reward function C
bounded in [0, 1]:

Theorem 1 Ler denote € = E,..q_, [l(s,m, 7*)], then there exists m € wy.)y such that
J(w) < J(r*) + T?€

Theorem 5 Let ey = min,cm + 211 Esvd,, [L(s, )] be the true loss of the best policy, then if
N = O(%) there exists ™ € 1.y and u such as J(7) < J(7*) + uTex + O(1)

Attia A, Dayan S . Global overview of Imitation Learning. 2018. arXiv preprint arXiv:arXiv:1801.06503 2 8/5 7



Summary of BC

o Advantages e When to use
1. easy toimplement 1. 1-step deviation not too bad
2. efficient and stable to train 2. expert episodes cover state space
o Disadvantage e When not to use
1. distribution mistmatch 1. 1-step deviation lead to catastrophic error
2. compounding error 2. optimze long-term objective
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Summary of BC

e other problem setting ?

o Using ambiguous demonstration data to imitate learning, thus reducing the cost
of collecting demonstration

30/57



Inverse RL

e Theideaisto learn the optimal reward function that can explain the expert's
behavior most appropriately

Environment

$

RL Rew: f Re,lnfomgment

demonstration
of the expert
Environment

IRL
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Inverse RL

However, since a policy can be optimal for multiple reward functions, the problem
of determining the reward function is “ill-posed”

o To obtain the unique solution, many studies have proposed additional objective

functions to be optimized
e maximize the margin
e maximize the entropy
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Inverse RL

e SOMe papers

ALVIL: P. Abbeel and A. Y. Ng. Apprenticeship learning via inverse reinforcement
learning. In Proceedings of the international conference on Machine learning
(ICML), 2004.

MaxEnt: B. D. Ziebart, A. Maas, J. A. Bagnell, and A. K. Dey. Maximum entropy
inverse reinforcement learning. In Proceedings of the Twenty-Second
Con_x0002_ference on Artificial Intelligence (AAAIl), pages 1433-1438, 2008.
MaxCausalEnt: B. D. Ziebart, J. A. Bagnell, and A. K. Dey. Modeling interaction via
the principle of maximum causal entropy. in Proc. of International Conference on
Machine Learning, Haifa, Israel, 2010.

N. D. Ratliff, J. A. Bagnell, and M. A. Zinkevich. Maximum margin planning. In
Proceedings of the international conference on Machine learning (ICML), pages
729-736, 2006b.

Guided cost learning: Chelsea Finn, Sergey Levine, and Pieter Abbeel. 2016.
Guided cost learning: deep inverse optimal control via policy optimization. In
Proceedings of the 33rd International Conference on International Conference on
Machine Learning - Volume 48 (ICML'16). JMLR.org, 49-58.

Boularias, A., Kober, J., and Peters, J. Relative entropy inverse reinforcement
learning. In International Conference on Artificial Intelligence and Statistics

(AISTATS), 2011. 33/57



Apprenticeship Learning via Inverse Reinforcement Learning

Pieter Abbeel PABBEELQCS.STANFORD.EDU
Andrew Y. Ng ANG@QCS.STANFORD.EDU

Computer Science Department, Stanford University, Stanford, CA 94305, USA



o finite state MDP (S, 4, P.~, D, R) , the reward function assume to be bounded

in absolute value by 1
. features mapping function: ¢ : S — [0,1]"
o feature vector: f; = ¢(s)
. feature expectations: () = E; 5~p[Y g Vib(5:)] € R
e assume there is some “true” reward function: R*(S) = w* (S), w* e ek, In

order to ensure that the rewards are bounded by 1, we also assume ||w*||; < 1

* R(s)=w ¢(s) VT =Ezg~p[V"(s0)]
Gr =07 R(st) = XiZo v'w’ ¢(s¢) = Ers~D [f: Y R(st)]
° V?T(S) — Ew,3n=3 [(;T] =0
= HJTEW sp~D [Z ’Tt ¢(3t ]]
t=0
= w ' p(r)



o if we have found some set of policies T, T2, ..., T, , we can mix them to get a

new policy
o At the start of a trajectory, choose one policy with probability -;, then we
always acts according to the selected policy until trajectory end

o the feature expectations of the mixed policy is

it )‘z‘ﬁ(“'z‘) (_)‘z‘ 20,2 A = 1)

o Use demonstration data  {s\",s!",...}7m,  to estimate the expert’s feature

expectations ug = wu(7g)

[E Zz—l Zt 0 gb(.s )

36/57



o to find a policy whose performance is close to expert’s on the unknown reward

function, just need to find a policy 7+ such that ||u(7) — pglls <€

[ED —o 7' R(se)|me] — E[D_Zo v R(s¢)|7]| < gap of policy value
wll2]|w(T) — pEll2
l-e=c¢€

gap of feature expection

IAIA

z"y| = ||z]]2|yll2cos(8) < ||[|2]|yll2

|wlfz < [lwlly <1
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. Randomly pick some policy 7*, compute (or approx-
imate via Monte Carlo) p'? = p(7(?)), and set i = 1.

. Compute ) = max,ju |, <1 Minje(o. (-1} w" (1E -
119), and let w' be the value of w that attains this
maximum.

. If t‘Y < ¢, then terminate.

4. Using the RL algorithm, compute the optimal policy

7" for the MDP using rewards R = (w™)7¢.

5. Compute (or estimate) ' = p(7(*).

. Set ¢ =1+ 1, and go back to step 2.
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t(z) — max min w_ R ()
w:||w|[2 <1 j£{0,1,2,...,(i—1)} (ke —p7)

o min: fix reward function as w &(s) , find a policy (by RL) to minimize the

gap of feature expection

o max: fix policy, find parameter 4~ (i.e. reward function) to maximize te gap

of policy value @

max; ., ¢ <— margin of policy value
s.t. prEEwT;.s(j}th,j=[},...,i—1
[lwll2 <1

e The key idea is to match the feature expectations (FEM), and then use additional
objective functions (max margin here) to deal with the “ill-posed” problem
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Maximum Entropy Inverse Reinforcement Learning

Brian D. Ziebart, Andrew Maas, J.Andrew Bagnell, and Anind K. Dey

School of Computer Science
Carnegie Mellon University
Pittsburgh, PA 15213

bziebart@cs.cmu.edu, amaas @andrew.cmu.edu, dbagnell @ri.cmu.edu, anind @cs.cmu.edu



MaxEnt

o Objective: maximize the the entropy of trajectory distribution under the condition
of feature matching

Problem Formulation

arg max, H(p) (entropy)
subject to E. e [o(7)] = E . [p(7)], (feature matching)
YorerpP(r) =1, VreT:p(t)>0 (prob. distr)

o choose the distribution that does not exhibit any additional preferences beyond
matching feature expectations
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MaxEnt

o for Deterministic MDP

Flio) = ziﬁ) eap(6 £r) = zé@) exp(6’ ) 1s)

35T

o for Non-Deterministic MDP, paths are determined by the action choices of the
agent and the random outcomes of the MDP

exp(0'f,
P(rio,T) = Y Pr(o) B,

o=0
/ Z(ng)emp(e_fT) Il Pr(sealas,se)

0n0 o o o 2
transition distribution St+1,08,8 €T

deterministic transition

e Stochastic Policy P(al6,T)cc >  P(r]6,T)

TAETi=1
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MaxEnt

o Maximizing the entropy of the distribution over paths subject to the feature
constraints from observed data implies that we maximize the likelihood of the
observed data under the maximum entropy (exponential family) distribution
derived above

0" — L(#) = logP (7|6, T
arg max (f) = arg max Z ogP(76,T)

eramples T

VL) =f-) P(r6,T)f. =f - D,f,

X

state visitation frequencies

44/57
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MaxCausalEnt

o MaxCausalEnt: B. D. Ziebart, J. A. Bagnell, and A. K. Dey. Modeling interaction
via the principle of maximum causal entropy. in Proc. of International
Conference on Machine Learning, Haifa, Israel, 2010.

T
P(AT||ST) 2 T] P(AtIS1e, Ave—r). argmax H(AT||ST)
t=1 {P(A¢|S1:¢,A1:4-1)}

P(AIS) = Tl P(ASir,Avs 1) such that: Eg o[F(S,A)] = Es a[F(S,A)]
and Vs, Av.e_; ) P(At[S1, Ari1) =1,
r T ;ltl
= H(A(S14, Avio1), and given: P(S”[|A"77).
t=1

H(A"||S") £ Eas[~log P(A"]|S)]
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Summary of IRL

e advantages:
1. does not need interactive expert
2. very efficient when trained (in some cases can outperform the demonstrator)
3. haslong-term planning

o disadvantages:
1. can be difficult to train

e Use when:

1. an interactive expert is not available
2. it might be easier to learn the reward functions than the expert’‘s policy
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Generative Adversarial Imitation Learning

Jonathan Ho Stefano Ermon
Stanford University Stanford University
hoj@cs.stanford.edu ermon@cs .stanford.edu



o IRL methods aim to recover the expert's cost function and then extract a policy from
that cost function with reinforcement learning. This approach is indirect and can be
slow

o We propose a new general framework for directly extracting a policy from data, as if
it were obtained by reinforcement learning following inverse reinforcement learning

e IRL:

maximize (min —H(r) + Eq[e(s, a)]) — Eqx[c(s,a)]

ceC mell

RL(c) = argenﬁin—ﬂ(rr) + Ex[c(s, a)]
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IRL methods aim to recover the expert's cost function and then extract a policy from
that cost function with reinforcement learning. This approach is indirect and can be
slow

We propose a new general framework for directly extracting a policy from data, as if
it were obtained by reinforcement learning following inverse reinforcement learning

general form of IRL:

maximize (min —H(r) + Eq[e(s, a)]) — Eqx[c(s,a)]

ceC mell

= argmin —H (7)) + E;[c(s,a)]

mTell
/ Exlo(s, a)] & B[ v'e(st, ar)]

£ E, [~ log 7 (a|s)] is the y-discounted causal entropy
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e in case of overfit, we incorporate a (closed, proper) convex cost function regularizer
¢ : RS*A 5 R into our study, it must be convex as a function defined on all of RS*A

IRLy(7g) = arE%I;laj(—z/)(c) + (Ie:lélI]l_H(W) + Eﬂ[c(s,a)]) —Er.lc(s, a)]

C € IRLw(TrE)

e oOne-to-one correspondence between policy set and occupancy measures set
pr(s,a) = m(als) 322 v P (st = s|m)

D2 {p::mell}

= {p tp>0 and ), p(s,a) =po(s) +72 v, P(sls’sa)p(s,a) Vse S}.

N

distribution of starting states

Proposition 3.1 (Theorem 2 of Syed et al. [29]). If p € D, then p is the occupancy measure for
m,(als) = p(s,a)/ >, p(s,a’), and 7, is the only policy whose occupancy measure is p.
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o forafunction f:RS*4 - R, its convex conjugate is f*(z) = sup cgsxa 27y — f(y)

Proposition 3.2. [RL oIRLy(7g) = argmin, .y —H(7) + ¢*(pr — Pm;)]

Lemma 3.1. Let H(p) = — > saP(8,a)10g(p(s,a)/ > . p(s;a")). Then, H is strictly concave,
and for all * € Il and p € D, we have H(7) = H(p,) and H(p) = H (7).

Proof of Lemma First, we show strict concavity of H. Let p and p’ be occupancy measures, and
suppose A € [0, 1]. For all s and a, the log-sum inequality [6] implies:

Ap(s,a) + (1= A)p'(s,a)

—(/\p(S,a) + (1 - /\)P (3? a)) log Eaf()‘P(S . ) (1 _ A) (S,a")) (19)
G g SR o
. Ap(s, a) i (1=M)p'(s,a) D2
S ailogl > Zaglogz > /\p](.s a) log X ) (1—=X)p'(s,a)log T=25. 7/, @) (21)
= —p(s,a)lo pls,a) — e ik p'(s,a)
= (pts.aton LU ) + (-0 (G aton R0 ) e

Summing both sides over all s and a shows that
H(Ap+ (1= X)p') = XH(p) + (1 — N H(p')
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Lemma 3.1. Let H(p) = =, , p(s,a)log(p(s,a)/ 3., p(s,a’)). Then, H is strictly concave,

and for all w € Il and p € D, we have H() = H(p,) and H(p) = H(7,).

H(m) =E;[-logm(als)] H(p) = Zp(s a) log p(s,a)
= — Z pr(s,a)logm(als) 2w P(s,0")
e o (e.0) —Zﬂ-.-r (s,a) logm,(als)
= —;pﬂ(s,ﬂ) log Za" p,r(s,a,’) _ E-,-rp[— log ’-’Tp(ﬂ|3)]
= ﬂ-(pﬂ), = H(WP)‘

52/57



Proposition 3.2. RLoIRL,(7g) = argmin_ . —H(7) + ¥*(pr — pry)

A

— T
Let ¢ € IRLy(7g), 7 (¢) = RLoIRLy(7g), and I (3:) = SUPyecrsxA T Y
A € argmin —H () + Y™ (pr — Pag) (31)

= aI‘—H(‘JT) —(c) + Z(,f:).,.r (s,a) — prz(s,a))c(s,a) (32)

We wish to show that 74 = 7. To do this, let p4 be the occupancy measure of 74, let p be the
occupancy measure of 7, and define L : D x RS*4 — R by

L(p,c) = + Z p(s,a)c(s,a) — Z Pre(8,a)c(s, a). (33)
U i m s.a s,0

The following relationships then hold, due to Proposition@

pa € argmin max L(p.c). (34)

I

¢ € arg (p,c), (35)

p € argmin L(p, ). (36)
peD

IRLy(7g) = arg @ H(m) + Er[c(s, a)]) —E;.[c(s,a)]

celR

Erlc(s,a)] = ZSGPW(S a)c(s, a) m;nmax L(p,c) = mf.xmgnf}(p, c)

— ()
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« Proposition 3.2 tells us that ¢ -regularized inverse reinforcement learning, implicitly,
seeks a policy whose occupancy measure is close to the expert's, as measured by the
convex function Y™

e conclusion

e IRL is a dual of an occupancy measure matching problem
e The induced optimal policy is the primal optimum

o Enticingly, this suggests that various settings of Y lead to various imitation learning
algorithms that directly solve the optimization problem given by Proposition 3.2
e Corollary 3.2.1. If v is a constant function, ¢ € IRLy(7wg), and 7 € RL(¢), then pz = pr.
e apprenticeship learning:

minimize magi E lc(s,a)] — E,_[c(s,a)]
m e

Sc : RS*XA 5 R, defined by d¢(c) = 0 if ¢ € C and +oco otherwise,

max By e(s, )] —Exz[c(s, 6)] = max —dc(c) + > (pr(s,0)=pri(s, a))e(s,a) = 8¢ (pr—pry)

s,a

minimize —H(m) + mgg:Ew[c(s, a)] — Ex.[c(s,a)]

™
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o Generative adversarial imitation learning

a [Exglg(e(s;a))] ifc<0 _ [~z —log(l—e") ifz<0
Yaa(e) = {+oo otherwise where g(z) = {+oo otherwise
VGa(pr — prg) = max  Erllog(D(s,a))] + Eqg[log(l — D(s, a))]

DE(U,I}‘S x A

miniﬂmize V6a(pr — Prg) — AH(T) = Dis(pr, prg) — MH ()
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Algorithm 1 Generative adversarial imitation learning
1: Input: Expert trajectories T ~ 7, initial policy and discriminator parameters 6y, wq

2: fori=0,1,2,... do
3:  Sample trajectories 7; ~ T,
4:  Update the discriminator parameters from w; to w;+; with the gradient

E.. [Vylog(Dy(s,a))] +E, [V log(l — Dy(s,a))]

(17)

Take a policy step from 6; to 6,1, using the TRPO rule with cost function log(D,,, ., (s, a)).

5:
Specifically, take a KL-constrained natural gradient step with
E.. [Vglog me(als)Q(s,a)] — AVeH (), (18)
where Q(g? C_L) - IE:"H [log(Dwz'+1(Sa (L)) I S0 = ga ag = 6’]
6: end for
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RL platform

https://github.com/wxc971231/RL_Platform-CrossTheWall
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