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Motivation

➢Multi-View Contrastive Learning  
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Motivation

How can we find the right balance of views that share just the information we need, 
no more and no less?
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1) The optimal choice of views depends critically on the downstream task.

2) For many common ways of generating views, there is a sweet spot in terms of 
downstream performance where the mutual information (MI) between views is 
neither too high nor too low.

𝑣1 𝑣2𝐼(𝑣1; 𝑣2)mutual information(MI)



InfoMin principle

InfoMin principle: A good set of views are those that share the minimal information 
necessary to perform well at the downstream task.



Formulation

InfoNCE loss:

The score function ℎ(∙,∙) typically consists of two 
encoders (𝑓1 for 𝑣1 and 𝑓2 for 𝑣2).

The resulting representations are 𝑧1 = 𝑓1(𝑣1) and 𝑧2 =𝑓2(𝑣2).
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Theoretical analysis
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Proposed method: InfoMin Aug
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Learning views for contrastive learning

To understand how the choice of views impact the representations learned by 
contrastive learning, we construct a toy dataset that mixes three tasks.
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Proposed method

➢ Unsupervised View Learning



Proposed method

➢ Semi-supervised View Learning



Experiment



Experiment



THANKS


