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» Multi-View Contrastive Learning
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'Motivation R

How can we find the right balance of views that share just the information we need,
no more and no less?
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How can we find the right balance of views that share just the information we need,
no more and no less?

<
1) The optimal choice of views depends critically on the downstream task.

2) For many common ways of generating views, there is a sweet spot in terms of
downstream performance where the mutual information (Ml) between views is

neither too high nor too low.

mutual information(Ml) - [(v;vp) .
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InfoMiin principle: A good set of views are those that share the minimal information
necessary to perform well at the downstream task.

Too much noise “Sweet spot” Missing info
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InfONCE loss:

eh(vl,iav2,i)
£NCE = —K log 17e
j=1

eh(vlaijvzaj)

The score function h(-,) typically consists of two
encoders (f; for v; and f, for v,).

The resulting representations are z; = f1(vq) and z; =f(vz). /

Positive Pair
for InfoMax
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Definition 1. (Sufficient Encoder) The encoder fi1 of v1 is sufficient in the contrastive learning
framework if and only if I (v1;ve) = I(f1(v1);Va2).

Definition 2. (Minimal Sufficient Encoder) A sufficient encoder f1 of vy is minimal if and only if
I(fi(v1);ve) < I(f(v1):v1),Y f that is sufficient.

Definition 3. (Optimal Representation of a Task) For a task ‘T whose goal is to predict a semantic

label y from the input data X, the optimal representation z° encoded from X is the minimal sufficient
statistic with respect to'y.
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. Missing information: When I(vyi:va) < I(x:y), there is information about the task-relevant
variable that is discarded by the view, degrading performance.

2. Sweet spot: When I(vy:y) = I(va:y) = I(v1:va) = I(x:y). the only information shared
between vy and vo 1s task-relevant, and there 1s no irrelevant noise.

fad

Excess noise: As we increase the amount of information shared in the views beyond 7(x:y), we
begin to include additional information that is irrelevant for the downstream task. This can lead to
worse generalization on the downstream task [, 55].

F3
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I(vi;ve) =I(xy) I(Vl; VZ) ‘ I(vy;ve) =1(x;y) I(Vl’; Vz)
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(a) STL-10 classification (b) CIFAR-10 classification

Figure 3: We create views by using pairs of image patches at various offsets from each other. As IncEg is
reduced, the downstream task accuracy firstly increases and then decreases, leading to a reverse-U shape.
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(a) STL-10 classification
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(b) NYU-v2 Segmentation

Figure 4: We build views by splitting channels of different color spaces. As Ixcg decreases, the accuracy on
downstream tasks (STL-10 classification, NYU-v2 segmentation) improves.
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(b) Random Resized Crop

Figure 5: The reverse U-shape traced out by parameters of individual augmentation functions.
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(2) InfoMin Data Augmenation on ImageNet

- £AUBr o gy PyTorch-style data augmentation
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Figure 3: The augmentation that we manually designed following the principle of InfoMin. As can be see from the left figure, lower Iy typically

results in higher accuracy before we touch a turning point (which we might haven't touched yet).
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Table 1: Single-crop ImageNet accuracies (%) of linear classifiers [77] trained on representations learned
with different contrastive methods using ResNet-50 [2%]. InfoMin Aug. refers to data augmentation using
RandomResizedCrop, Color Jittering, Gaussian Blur, RandAugment, Color Dropping, and a JigSaw branch as in
PIRL [+ 7]. * indicates splitting the network into two halves.

Method Architecture  Param. Head  Epochs Top-1 Top-5
InstDis [ /] ResNet-50 24 Linear 200 56.5 -
Local Agg. [=1] ResNet-50 24 Linear 200 58.8 -
CMC [64] ResNet-50% 12 Linear 240 60.0 82.3
MoCo [ 6] ResNet-50 24 Linear 200 60.6 -
PIRL [ 7] ResNet-50 24 Linear 800 63.6 -
CPCv2 [2Y] ResNet-50 24 - - 63.8 85.3
SimCLR [*] ResNet-50 24 MLP 1000 69.3 89.0
InfoMin Aug. (Ours) ResNet-50 24 MLP 200 70.1 89.4

InfoMin Aug. (Ours) ResNet-50 24 MLP 800 73.0 91.1
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Table 2: Results of object detection and instance segmentation fine-tuned on COCO. We adopt Mask R-CNN
R50-FPN, and report the bounding box AP and mask AP on val12017. In the brackets are the gaps to the
ImageNet supervised pre-training counterpart. For fair comparison, InstDis [ /0], PIRL [-17], MoCo [26], and
InfoMin are all pre-trained for 200 epochs.

(a) Mask R-CNN, R50-FPN, 1x schedule

pre-train AP™ APY APY AP AP AP¥

random init 32.8 50.9 35.3 29.9 47.9 32.0

supervised 39.7 59.5 43.3 35.9 56.6 38.6
InstDis [70] 38.8(10.9)  584([1.1) 42.5(]0.8) | 35.2(,0.7) 55.8(,0.8) 37.8(10.8)
PIRL [+7] 38.6(L1.1) 58.2([1.3) 42.1(]1.2) | 35.1(J0.8) 55.5([1.1) 37.7(]0.9)
MoCo [26] 39.4(]0.3) 59.1(J0.4) 429(]0.4) | 35.6(]0.3) 56.2(]0.4) 38.0(]0.6)
MoCo v2 [Y] | 40.1(10.4) 59.8(10.3) 44.1(70.8) | 36.3(10.4) 56.9(10.3) 39.1(0.5)
InfoMin Aug. | 40.6(70.9) 60.6(71.1) 44.6(71.3) | 36.7(70.8) S57.7([1.1) 39.4(0.8)

(b) Mask R-CNN, R50-FPN, 2x schedule

pre-train AP™ AP APY AP™K APIX APIK

random init 38.4 57.5 42.0 34.7 54.8 37.2

supervised 41.6 61.7 45.3 37.6 58.7 40.4
InstDis [70] 41.3(10.3)  61.0(10.7) 45.3(]0.0) | 37.3(/0.3) 58.3(,0.4) 39.9(]0.5)
PIRL [+7] 41.2(10.4)  61.2(10.5) 45.2(10.1) | 37.4(/0.2) 58.5(,0.2) 40.3(]0.1)
MoCo [26] 41.7C°0.1) 61.4(,0.3) 457(70.4) | 37.5(J0.1) 58.6(J0.1) 40.5(70.1)
MoCov2 (Y] | 41.7(C°0.1) 61.6(.0.1) 45.6(70.3) | 37.6(.0.0) 58.7(.0.0) 40.5(70.1)
[InfoMin Aug. | 42.5(70.9) 62.7(71.0) 46.8(71.5) | 384(70.8) 59.7(71.0) 41.4(71.0)
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Table 3: Pascal VOC object detection. All contrastive models are pretrained for 200 epochs on ImageNet for
fair comparison. We use Faster R-CNN R50-C4 architecture for object detection. APs are reported using the
average of 5 runs. * we use numbers from [ 6] since the setting is exactly the same.

pre-train APsg AP APy5 ImageNet Acc(%)
random 1nit.* 60.2 33.8 33.1 -
supervised™® 81.3 53.5 58.8 76.1
InstDis 80.9 55.2 61.2 59.5

PIRL 81.0 55.5 61.3 61.7
MoCo* 81.5 55.9 62.6 60.6
InfoMin Aug. (ours) 82.7 57.6 64.6 70.1
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To understand how the choice of views impact the representations learned by
contrastive learning, we construct a toy dataset that mixes three tasks.

position | v

digit

]

c-moving
MNIST

Figure 6: Illustration of the Colorful-Moving-MNIST dataset. In this example, the first view v1 is a sequence
of frames containing the moving digit, e.g., vi = x1.x. The matched second view v3 share some factor with z;

that vy can predict, while the unmatched view v, does not share factor with z;.
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Table 4: We study how information shared by views I(v1;v2) would affect the representation quality, by
evaluating on three downstream tasks: digit classification, localization, and background (STL-10) classification.
Evaluation for contrastive methods is performed by freezing the backbone and training a linear task-specific head

I(vi;va2) digit cls. error rate (%) background cls. error rate (%) digit loc. error pixels
Sinele digit 16.8 88.6 13.6
Fac?or bkgd 88.6 S 1.7 16.1
pos 579 87.6 3.95
bkgd, digit, pos 88.8 56.3 16.2
Multiple bkgd, digit 88.2 53.9 16.3
Factors bkgd, pos 38.8 53.8 15.9
digit, pos 14.5 88.9 13.7
Supervised 34 45.3 0.93
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» Unsupervised View Learning
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» Semi-supervised View Learning

\

g,c1,¢2 f1,f2 N\ \ /
unsupervised: reduce I (vq; vg) supervised: keep I (v1;y) and I (v2;y)

min max I3 (9(X) 15 9(X)2s) + Lee(e1(9(X)1),y) + Lee(ea(9(X)2:3), y)
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Figure 7: View generator learned by (a) unsupervised or (b) semi-supervised objectives.
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Table 5: Comparison of different view generators by
measuring STL-10 classification accuracy: supervised, un-
supervised, and semi-supervised. “# of Images” indicates
how many images are used to learn view generators. In
representation learning stage, all 105k images are used.

Method (# of Images) RGB YDbDr
unsupervised (100k) 824 +32 84.3+0.5
supervised (5k) 799+ 15 785423

semi-supervised (105k) | 86.0 = 0.6 87.0 £ 0.3
raw views 81.5+0.2 86.6 0.2
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