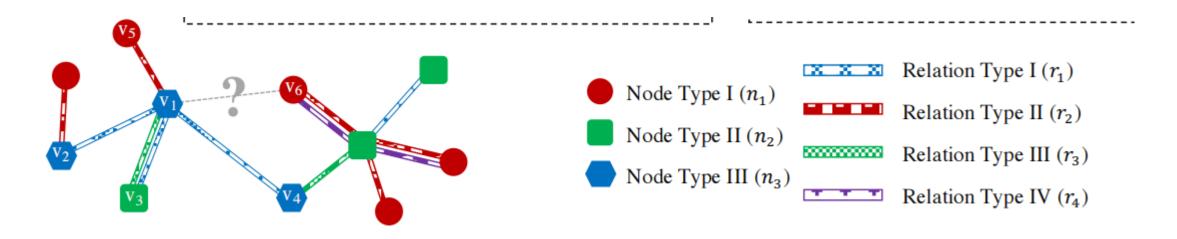
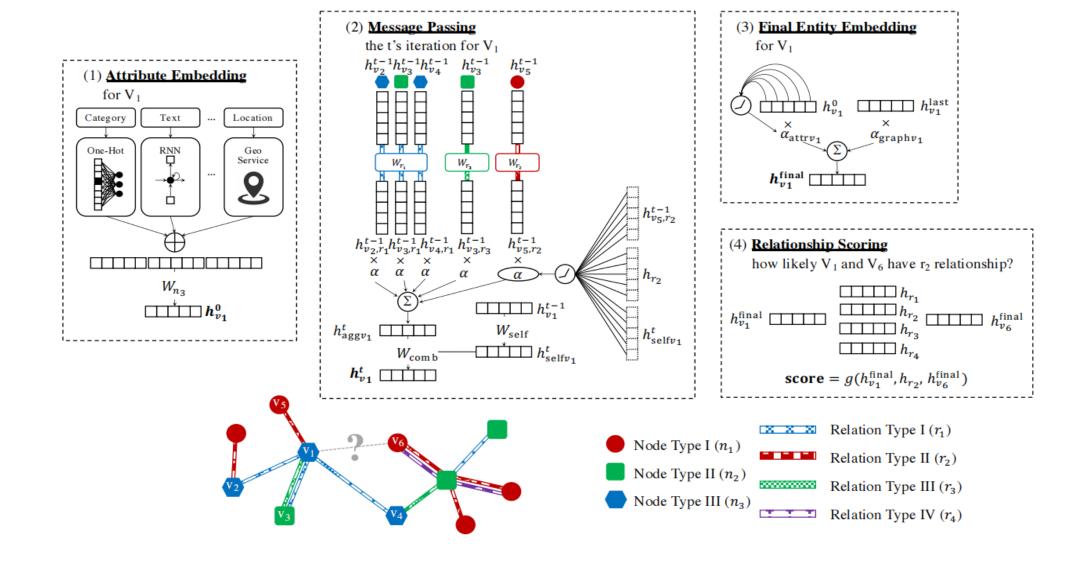
Relation-aware Graph Attention Model With Adaptive Self-adversarial Training

Xiao Qin

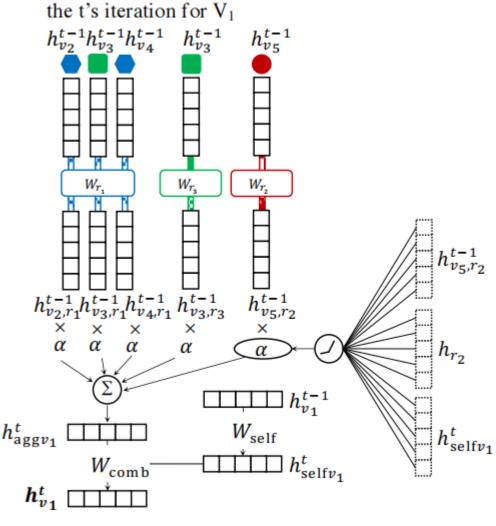

Nasrullah Sheikh

Berthold Reinwald

Lingfei Wu


Introduction

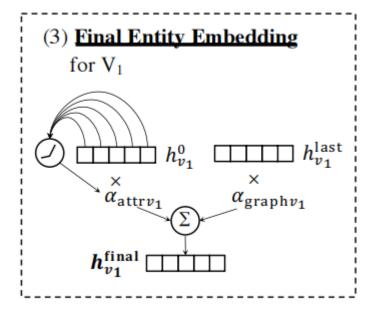
heterogeneous graphs on the task of relationship prediction



However, existing research tends to ignore the semantics of the edges, that is the edge information is only used either for graph traversal and/or selection of encoding functions

Framework

(2) Message Passing



$$h_{v_i}^{(t)} =$$

$$\sigma\left(\frac{1}{L}\sum_{l=1}^{L}\left(\sum_{r\in R}\sum_{v_{j}\in N_{v_{i}}^{r}}\alpha_{(v_{i},v_{j})}^{l}W_{r}^{(t-1)}h_{v_{j}}^{(t-1)}+W_{self}^{(t-1)}h_{v_{i}}^{(t-1)}\right)\right),$$

$$\alpha_{(v_i,v_j)} =$$

$$\frac{\exp\left(\sigma\left(\boldsymbol{a_{e}}^{\top}\left[W_{self}^{(t-1)}h_{v_{i}}^{(t-1)}\parallel h_{r}\parallel W_{r}^{(t-1)}h_{v_{j}}^{(t-1)}\right]\right)\right)}{\sum_{r'\in R}\sum_{v_{n}\in N_{v_{i}}^{r'}}\exp\left(\sigma\left(\boldsymbol{a_{e}}^{\top}\left[W_{self}^{(t-1)}h_{v_{i}}^{(t-1)}\parallel h_{r'}\parallel W_{r'}^{(t-1)}h_{v_{n}}^{(t-1)}\right]\right)\right)}$$
(4)

$$h_{v_i}^{\text{final}} = \alpha_{attr} h_{v_i}^{(0)} + \alpha_{graph} h_{v_i}^{last}, \tag{6}$$

$$\alpha_{attr} = \frac{\exp(\sigma(\boldsymbol{a_s}^{\top} h_{v_i}^{(0)}))}{\exp(\sigma(\boldsymbol{a_s}^{\top} h_{v_i}^{(0)})) + \exp(\sigma(\boldsymbol{a_s}^{\top} h_{v_i}^{last}))}, \quad (7)$$

Negative Sampling.

LOSS:
$$\underset{\theta}{\operatorname{argmin}} \sum_{(v_i, r, v_j) \in E} \left[\ell(+1, d_r(f(v_i), f(v_j))) + \ell(-1, d_r(f(\bar{v}_m), f(\bar{v}_n))) \right],$$

only a small subset of all possible negative samples are useful for training

$$\underset{\{\bar{v}_m, r, \bar{v}_n\} \notin E}{\operatorname{argmax}} d'_r(f'(\bar{v}_m), f'(\bar{v}_n)),$$

$$\underset{\{\bar{v}_m, r, \bar{v}_n\} \notin E}{\operatorname{argmin}} |d'_r(f'(v_i), f'(v_j)) - d'_r(f'(\bar{v}_m), f'(\bar{v}_n)) - \mu|,$$

Experiment

	Amazon			Youtube			Company		
Methods	AUC↑	AP↑	F1↑(0.5)	AUC↑	AP↑	F1↑(0.5)	AUC↑	AP↑	F1↑(0.5)
ComplEx	53.18(10)	53.18(10)	54.39(10)	52.11(10)	51.60(10)	50.97(9)	56.31(8)	55.30(9)	55.33(8)
ConvE	49.65(11)	49.79(11)	66.38(8)	50.03(11)	50.07(11)	27.32(11)	52.43(10)	53.17(10)	29.15(10)
DistMult	53.94(9)	53.51(9)	53.71(11)	52.49(9)	52.12(9)	49.50(10)	55.29(9)	56.26(8)	56.51(7)
DistMult + ASA	64.85(8)	67.29(8)	64.30(9)	76.45(6)	78.63(6)	69.48(6)	67.86(7)	68.72(6)	66.47(5)
metapath2vec	94.15(6)	94.01(6)	87.48(6)	70.98(7)	70.02(7)	65.34(8)	73.47(3)	70.88(4)	16.35(11)
HAN	87.57(7)	88.15(7)	77.35(7)	64.66(8)	61.24(8)	65.45(7)	52.33(11)	52.06(11)	41.88(9)
GATNE	96.25(5)	94.77(5)	91.36(4)	84.47(5)	82.32(5)	76.83(5)	69.72(5)	67.22(7)	61.87(6)
R-GCN	97.16(4)	95.87(4)	94.52(2)	92.38(4)	92.18(4)	83.35(3)	68.69(6)	69.95(5)	66.75(4)
R-GCN + ASA	98.37(3)	97.87(3)	94.21(3)	93.19(3)	93.11(3)	79.33(4)	69.96(4)	73.20(3)	67.90(3)
RelGNN - ASA	98.84(2)	98.55(2)	95.17 (1)	94.39(2)	93.41(2)	86.32 (1)	74.94(2)	73.91(2)	70.45(2)
RelGNN	99.14 (1)	99.01 (1)	90.44(5)	96.44 (1)	96.08 (1)	83.89(2)	77.68 (1)	77.78 (1)	74.43 (1)

Table 2: Test results on benchmarks and the real-world dataset. AUC denotes the *area under the receiver operating characteristic curve* value and AP denotes the *average precision* corresponding to the *area under the precision-recall curve* value. \uparrow indicates that the higher the score the better the performance. AUC, AP and F1 are reported as percentage. The cutoff threshold for F1 is 0.5. (\cdots) after each score indicates the ranking of the method w.r.t. the specific setting. Underlined numbers are quoted from (Cen et al. 2019).

Sample Result

	Company							
Methods	MRR↑	Hit@1↑	Hit@10↑	Hit@30				
Random	.0457(7)	2.37(7)	7.71(7)	14.94(7)				
NSCaching ₁₀ NSCaching ₁₀₀ NSCaching ₅₀₀	.0789(2) .0695(5) .0658(6)	5.38 (1) 3.89(6) 3.99(4)	11.77(4) 11.50(5) 10.84(6)	19.20 ₍₄₎ 18.09 ₍₅₎ 16.75 ₍₆₎				
ASA ₁₀ ASA ₁₀₀ ASA ₅₀₀	.0818(1) .0754(3) .0751(4)	5.18(2) 3.95(5) 4.32(3)	13.32(3) 14.35 (1) 13.71(2)	22.01 ₍₃₎ 23.71 ₍₁₎ 22.99 ₍₂₎				

Table 3: Test results on Company. Hit@k is in percentage.

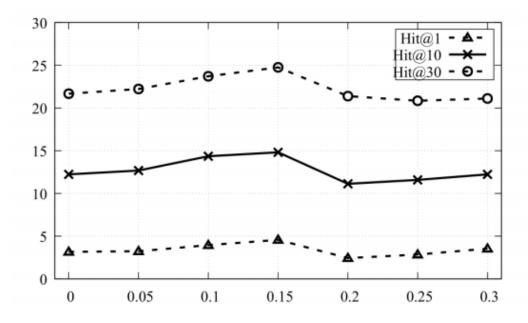
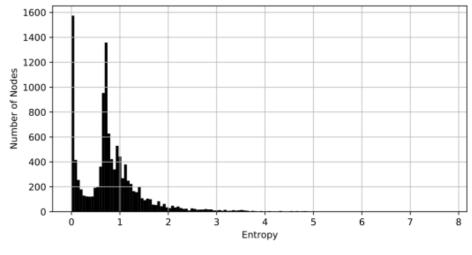
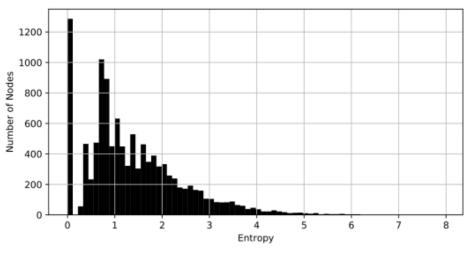




Figure 2: Hit@k by varying μ .

(a) RelGNN layer 1.

(b) RelGNN layer 2.

Figure 3: Entropy of attention distributions.