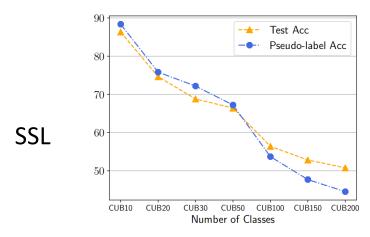
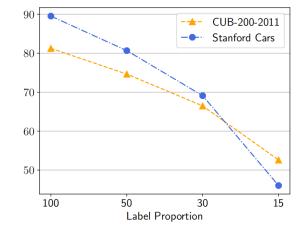

Self-Tuning for Data-Efficient Deep Learning

Ximei Wang * 1 Jinghan Gao * 1 Mingsheng Long 1 Jianmin Wang 1 School of Software, BNRist, Tsinghua University, Beijing, China, 100084

SSL & TL

- SSL (pseudo labels) and Confirmation bias
 - Without a decent pre-trained model to provide an implicit regularization, will be easily misled by inaccurate pseudo-labels, especially in large-sized label space.
 - SSL need a well pre-trained model
- TL and Model shift
 - The fine-tuned model shifts towards the limited labeled data and leaves away from the original smooth model pre-trained on a large-scale datasets
 - Utilizing unlabeled data to alleviate the model shifting

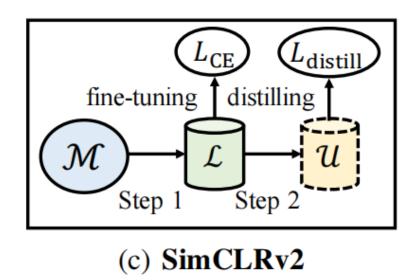



(a) Transfer Learning

(b) Semi-supervised Learning

SSL and TL are complementary

(a) Acc of FixMatch on CUB



TL

(b) Test accuracy of Co-Tuning

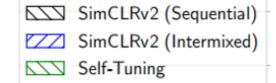
SimCLRv2

- Both utilize labeled data and unlabeled data
- The fine-tuned model would easily shift towards the limited labeled data with sampling bias and leaves away from the original smooth model pre-trained on a large-scale dataset

SimCLRv2 (Sequential)
SimCLRv2 (Intermixed)
Self-Tuning

50

20

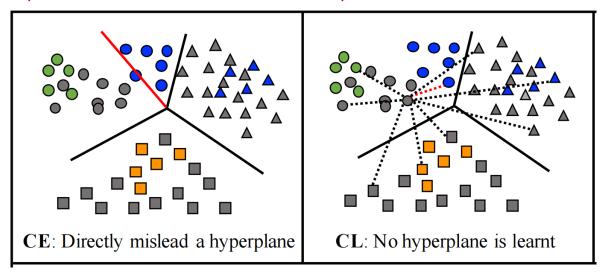

10

15

30

Label Ratio

(b) Compare with SimCLRv2


Confirmation bias: CE & CL loss

Cross Entropy

The model trained by CE loss will be easily confused by false pseudo-labels since it focuses on learning a hyperplane for discriminating each class from the other classes (CE loss overfitting easily)

Contrast Loss

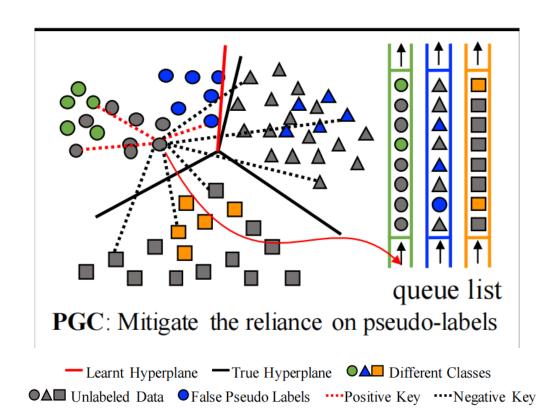
While standard CL loss lacks a mechanism to tailor pseudo-labels into model training, leaving the useful discriminative information on the shelf. (CL doesn't take classes into account)

Confirmation bias Solution-PGC

 Different from the standard CL which involves just a positive key in each contrast, PGC introduces a group of positive keys in the same pseudo-class to contrast with all negative keys from other pseudo-classes.

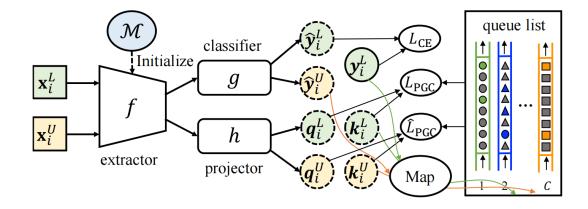
Two different augments

Queue size of one sample
$$\widehat{L}_{PGC} = -\frac{1}{D+1} \sum_{d=0}^{\left(\underline{D}\right)} \log \frac{\exp(\overline{\mathbf{q}} \cdot \overline{\mathbf{k}}_{d}^{\widehat{y}}/\tau)}{\operatorname{Pos} + \operatorname{Neg}}$$


$$Pos = \exp(\mathbf{q} \cdot |\mathbf{k}_0^{\widehat{y}} / \tau) + \sum_{j=1}^{D} \exp(\mathbf{q} \cdot \mathbf{k}_j^{\widehat{y}} / \tau)$$

The second augments ____ of queried sample

Neg =
$$\sum_{c=1}^{\{1,2,\cdots,C\}\setminus \widehat{y}} \sum_{j=1}^{D} \exp(\mathbf{q} \cdot \mathbf{k}_{j}^{c}/\tau),$$


$$\text{Labeled Data} \quad L_{\text{PGC}} = -\frac{1}{D+1} \sum_{d=0}^{D} \log \frac{\exp(\mathbf{q} \cdot \mathbf{k}_{d}^{y} / \tau)}{\text{Pos} + \text{Neg}},$$

Loss
$$\mathbb{E}_{(\mathbf{x}_i,y_i) \in \mathcal{L}} (L_{CE} + L_{PGC}) + \mathbb{E}_{(\mathbf{x}_i) \in \mathcal{U}} \widehat{L}_{PGC}.$$

Model Shift Solution-Unifying and Sharing

- By utilizing Unlabeled data at the same time in a unified form as shown the model shift challenge is expected to be alleviated.
- Shared queue improves the accuracy keys for unlabeled queries than that of a separate queue for unlabeled data.
- Self-Tuning has a better starting point to provide an implicit regularization than the model trained from scratch on the target dataset.

Experiments

Dataset	Type	Method	Label Proportion			
Dumset			15%	30%	50%	100%
	TL	Fine-Tuning (baseline)	45.25±0.12	59.68±0.21	$70.12{\scriptstyle\pm0.29}$	$78.01{\scriptstyle\pm0.16}$
		L^2 -SP (Li et al., 2018)	45.08±0.19	57.78 ± 0.24	69.47 ± 0.29	78.44 ± 0.17
		DELTA (Li et al., 2019)	46.83±0.21	60.37 ± 0.25	71.38 ± 0.20	$78.63{\scriptstyle\pm0.18}$
		BSS (Chen et al., 2019)	47.74±0.23	63.38 ± 0.29	$72.56{\scriptstyle\pm0.17}$	$78.85{\scriptstyle\pm0.31}$
		Co-Tuning (You et al., 2020)	52.58 ± 0.53	66.47 ± 0.17	$74.64{\scriptstyle\pm0.36}$	81.24 ± 0.14
	SSL	Π-model (Laine & Aila, 2017)	45.20±0.23	56.20±0.29	64.07±0.32	_
CUB-200-2011		Pseudo-Labeling (Lee, 2013)	45.33±0.24	$62.02{\scriptstyle\pm0.31}$	72.30 ± 0.29	_
		Mean Teacher (Tarvainen & Valpola, 2017)	53.26±0.19	66.66 ± 0.20	$74.37{\scriptstyle\pm0.30}$	_
		UDA (Xie et al., 2020)	46.90±0.31	61.16 ± 0.35	$71.86{\scriptstyle\pm0.43}$	_
		FixMatch (Sohn et al., 2020)	44.06±0.23	$63.54{\scriptstyle\pm0.18}$	$75.96{\scriptstyle\pm0.29}$	_
		SimCLRv2 (Chen et al., 2020b)	$ 45.74\pm0.15 $	62.70 ± 0.24	71.01 ± 0.34	_
	Combine	Co-Tuning + Pseudo-Labeling	54.11±0.24	68.07±0.32	75.94±0.34	_
		Co-Tuning + Mean Teacher	57.92±0.18	$67.98{\scriptstyle\pm0.25}$	72.82 ± 0.29	_
		Co-Tuning + FixMatch	46.81±0.21	$58.88{\scriptstyle\pm0.23}$	$73.07{\scriptstyle\pm0.29}$	_
		Self-Tuning (ours)	64.17 ±0.47	75.13 ±0.35	80.22 ±0.36	83.95 ±0.18

Experiments

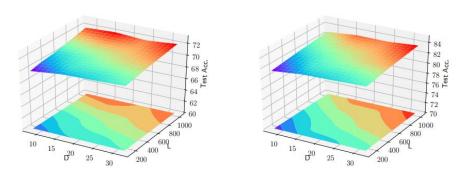
Dataset	Type	Method		Label P	roportion	
			15%	30%	50%	100%
Stanford Cars	TL	Fine-Tuning (baseline) L ² -SP (Li et al., 2018) DELTA (Li et al., 2019) BSS (Chen et al., 2019) Co-Tuning (You et al., 2020)	36.10 ± 0.30 39.37 ± 0.34 40.57 ± 0.12 46.02 ± 0.18	$64.13{\scriptstyle\pm0.18}\atop69.09{\scriptstyle\pm0.10}$	$75.48 \pm 0.22 \\ 76.53 \pm 0.24 \\ 76.78 \pm 0.21 \\ 80.66 \pm 0.25$	86.58 ± 0.26 86.32 ± 0.20 87.63 ± 0.27 89.53 ± 0.09
	SSL	П-model (Laine & Aila, 2017) Pseudo-Labeling (Lee, 2013) Mean Teacher (Tarvainen & Valpola, 2017) UDA (Xie et al., 2020) FixMatch (Sohn et al., 2020) SimCLRv2 (Chen et al., 2020b)	$\begin{array}{c} 40.93{\pm}0.23 \\ 54.28{\pm}0.14 \\ 39.90{\pm}0.43 \\ 49.86{\pm}0.27 \end{array}$	57.29 ± 0.26 67.02 ± 0.19 66.02 ± 0.21 64.16 ± 0.40 77.54 ± 0.29 61.70 ± 0.18	78.71 ± 0.30 74.24 ± 0.23 71.86 ± 0.56 84.78 ± 0.33	- - -
	Combine	Co-Tuning + Pseudo-Labeling Co-Tuning + Mean Teacher Co-Tuning + FixMatch	52.98±0.19	$73.76 \pm 0.26 \\ 71.42 \pm 0.24 \\ 73.24 \pm 0.25$	$75.38{\scriptstyle\pm0.29}$	- - -
		Self-Tuning (ours)	72.50 ±0.45	83.58 ±0.28	88.11 ±0.29	90.67 ±0.23

Experiments

Dataset	Type	Method	Label Proportion			
			15%	30%	50%	100%
		Fine-tuning (baseline) L ² -SP (Li et al., 2018)			$67.93 {\pm} 0.28 \\ 67.46 {\pm} 0.26$	
	TL	DELTA (Li et al., 2019)	42.16±0.21	$58.60{\scriptstyle\pm0.29}$	$68.51{\scriptstyle\pm0.25}$	$80.44{\scriptstyle\pm0.20}$
		BSS (Chen et al., 2019)	40.41±0.12	$59.23{\scriptstyle\pm0.31}$	$69.19{\scriptstyle\pm0.13}$	$81.48 {\scriptstyle\pm0.18}$
		Co-Tuning (You et al., 2020)	$ 44.09\pm0.67 $	61.65 ± 0.32	72.73 ± 0.08	$83.87{\scriptstyle\pm0.09}$
		Π-model (Laine & Aila, 2017)	37.32±0.25	58.49±0.26	65.63±0.36	_
ECVC Ainmag	SSL	Pseudo-Labeling (Lee, 2013)	46.83±0.30	$62.77{\scriptstyle\pm0.31}$	$73.21{\scriptstyle\pm0.39}$	_
FGVC Aircraft		Mean Teacher (Tarvainen & Valpola, 2017)	51.59 ± 0.23	71.62 ± 0.29	$80.31{\scriptstyle\pm0.32}$	_
		UDA (Xie et al., 2020)	43.96±0.45	64.17 ± 0.49	67.42 ± 0.53	_
		FixMatch (Sohn et al., 2020)	55.53 ± 0.26	71.35 ± 0.35	$78.34{\scriptstyle\pm0.43}$	_
		SimCLRv2 (Chen et al., 2020b)	$ 40.78\pm0.21 $	59.03 ± 0.29	68.54 ± 0.30	_
	Combine	Co-Tuning + Pseudo-Labeling	49.15±0.32	65.62±0.34	74.57±0.40	_
		Co-Tuning + Mean Teacher	51.46±0.25	$64.30{\scriptstyle\pm0.28}$	$70.85{\scriptstyle\pm0.35}$	_
		Co-Tuning + FixMatch	53.74 ± 0.23	$69.91{\scriptstyle\pm0.26}$	$80.02{\scriptstyle\pm0.32}$	-
		Self-Tuning (ours)	64.11 ±0.32	76.03 ±0.25	81.22 ±0.29	84.28 ±0.14

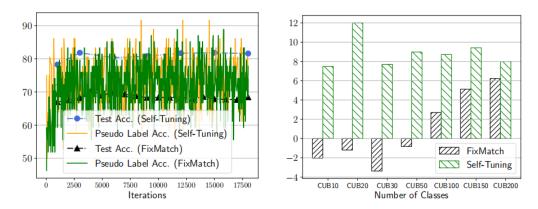
Experiments (Unsupervised Pretrained Model)

Table 4. Classification accuracy (%) \uparrow with a typical unsupervised pre-trained model MoCov2 on *CUB-200-2011*.


Type	Method	800 labels	5k labels
TL	Fine-Tuning (baseline) Co-Tuning	20.04 20.99	71.50 71.61
SSL	Mean Teacher FixMatch	28.13 21.18	71.26 71.28
Combine	Co-Tuning + Mean Teacher Co-Tuning + FixMatch	28.43 21.08	72.21 71.40
	Self-Tuning (ours)	36.80	74.56

Experiments (Ablation studies)

Table 5. Ablation studies of Self-Tuning on Stanford Cars.


Perspective	Method	15%	30%
Loss Function	w/ CE loss w/ CL loss w/ PGC loss	40.93 46.29 72.50	67.02 68.82 83.58
Info. Exploration	$w/o \ \widehat{L}_{PGC}$ $w/o \ L_{PGC}$ $separate queue$ $unified exploration$	58.82 58.85 70.43 72.50	81.71 77.52 80.78 83.58

Experiments (Sensitivity Analysis & Others)

(a) Acc on Car with 15% labels (b) Acc on Car with 30% labels

Figure 6. Sensitivity analysis for embedded size L of the projector and queue size D of each class on $Stanford\ Cars$. (Warmer colors indicate higher values)

(a) Training Process on CUB30 (b) $Acc_{test} - Acc_{pseudo_labels}$

Figure 7. Comparisons between Self-Tuning with FixMatch on pseudo label accuracy and test accuracy.