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SImCLRv2

* Both utilize labeled data and unlabeled data

* The fine-tuned model would easily shift towards the limited labeled data with sampling bias and
leaves away from the original smooth model pre-trained on a large-scale dataset
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Confirmation bias: CE & CL loss

* Cross Entropy

The model trained by CE loss will be easily confused by false pseudo-labels since it focuses on learning a hyperplane for
discriminating each class from the other classes (CE loss overfitting easily)

* Contrast Loss

While standard CL loss lacks a mechanism to tailor pseudo-labels into model training, leaving the useful discriminative
information on the shelf. (CL doesn’t take classes into account)

CE: Directly mislead a hyperplane CL: No hyperplane 1s learnt
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Confirmation bias Solution-PGC

* Different from the standard CL which involves just a positive key in each contrast, PGC introduces
a group of positive keys in the same pseudo-class to contrast with all negative keys from other

pseudo-classes. . Two different augments
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Model Shift Solution-Unifying and Sharing

* By utilizing Unlabeled data at the same time
in a unified form as shown the model shift
challenge is expected to be alleviated.

* Shared queue improves the accuracy keys for
unlabeled queries than that of a separate
qgueue for unlabeled data.

» Self-Tuning has a better starting point to
provide an implicit regularization than the
model trained from scratch on the target
dataset.
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Experiments

Dataset Type 'Method Label Proportion
15% 30% 50% 100%
Fine-Tuning (baseline) 45.25+0.12 59.68+0.21 70.12+0.29 78.01+0.16
L2-SP (Lietal., 2018) 45.08+0.19 57.78+0.24 69.47+0.29 78.44+0.17
TL |DELTA (Lietal., 2019) 46.83+0.21 60.37+0.25 71.38+020 78.63+0.18
BSS (Chen et al., 2019) 47.74+023 63.38+0.29 72.56+0.17 78.85+0.31
Co-Tuning (You et al., 2020) 52.58+053 66.47+0.17 74.64+036 81.24+0.14
[I-model (Laine & Aila, 2017) 45.20+023 56.20+0.29 64.07+0.32 -
Pseudo-Labeling (Lee, 2013) 45.33+024 62.02+0.31 72.30+0.29 —
CUB-200-2011 SSL Mean Teacher (Tarvainen & Valpola, 2017){53.26+0.19 66.66+0.20 74.37+0.30 -
UDA (Xie et al., 2020) 46.90+031 61.16+0.35 71.86+0.43 —
FixMatch (Sohn et al., 2020) 44.06+0.23 63.54+0.18 75.96+0.29 -
SimCLRv2 (Chen et al., 2020b) 45.74+0.15 62.70+0.24 71.01+0.34 -
Co-Tuning + Pseudo-Labeling 54.11+024 68.07+0.32 75.94+034 -
Combine |Co-Tuning + Mean Teacher 57.92+0.18 67.98+0.25 72.82+0.29 —

Co-Tuning + FixMatch

46.81+021 58.88+0.23 73.07+0.29 -

Self-Tuning (ours)

64.17+047 75.13+0.35 80.22+036 83.95+0.18




Experiments

Dataset ’ Type 'Method | Label Proportion
| | 15% 30% 50% 100%
Fine-Tuning (baseline) 36.77+0.12 60.63+0.18 75.10+021 87.20+0.19
L2-SP (Lietal., 2018) 36.10+030 60.30+0.28 75.48+022 86.58+0.26
TL DELTA (Lietal., 2019) 39.37+034 63.28+0.27 76.53+024 86.32+0.20
BSS (Chen et al., 2019) 40.57+0.12 64.13+0.18 76.78+021 87.63+0.27
Co-Tuning (You et al., 2020) 46.02+0.18 69.09+0.10 80.66+0.25 89.53+0.09
II-model (Laine & Aila, 2017) 45.19+021 57.29+0.26 64.18+0.29 -
Pseudo-Labeling (Lee, 2013) 40.93+0.23 67.02+0.19 78.71+0.30 -
Stanford Cars SSL Mean Teacher (Tarvainen & Valpola, 2017)|54.28+0.14 66.02+0.21 74.24+0.23 -
UDA (Xie et al., 2020) 39.90+043 64.16+0.40 71.86+0.56 -
FixMatch (Sohn et al., 2020) 49 .86+0.27 77.54+0.29 84.78+0.33 -
SimCLRv2 (Chen et al., 2020b) 45.74+0.16 61.70+0.18 77.49+0.24 -
Co-Tuning + Pseudo-Labeling 50.1620.23 73.76+0.26 83.33+0.34 —
Combine | Co-Tuning + Mean Teacher 52.98+0.19 71.42+0.24 75.38+0.29 -

Co-Tuning + FixMatch

42.3440.19 73.24+0.25 83.13+0.34

|Self-Tuning (ours)

72.50+045 83.58 028 88.11+0.29 90.67+0.23




Experiments

Dataset Type 'Method Label Proportion
15% 30% 50% 100%
Fine-tuning (baseline) 39.57+020 57.46+40.12 67.93+0.28 81.13+0.21
L2-SP (Lietal., 2018) 39.27+024 57.12+40.27 67.46+0.26 80.98+0.29
TL |DELTA (Li et al., 2019) 42.16+021 58.60+0.29 68.51+0.25 80.44+0.20
BSS (Chen et al., 2019) 40.41+0.2 59.23+0.31 69.19+0.13 81.48+0.18
Co-Tuning (You et al., 2020) 44.09+0.67 61.65+0.32 72.73+0.08 83.87+0.09
[I-model (Laine & Aila, 2017) 37.32+0.25 58.49+0.26 65.63+0.36 -
_ Pseudo-Labeling (Lee, 2013) 46.83+030 62.77+0.31 73.21+0.39 -
FGVC Aircraft SSL Mean Teacher (Tarvainen & Valpola, 2017)[51.59+023 71.62+0.29 80.31+0.32 -
UDA (Xie et al., 2020) 43.96+045 64.17+0.49 67.42+053 -
FixMatch (Sohn et al., 2020) 55.53+0.26 71.35+0.35 78.34+0.43 -
SimCLRv2 (Chen et al., 2020b) 40.78+021 59.03+0.29 68.54+0.30 —
Co-Tuning + Pseudo-Labeling 49.15+032 65.62+0.34 74.57+040 -
Combine |Co-Tuning + Mean Teacher 51.46+025 64.30+0.28 70.85+0.35 —

Co-Tuning + FixMatch

53.744+023 69.911+0.26 80.02+0.32 —

Self-Tuning (ours)

64.11+032 76.03+0.25 81.221029 84.281L0.14




Experiments (Unsupervised Pretrained Model)

Table 4. Classification accuracy (%) T with a typical unsupervised
pre-trained model MoCov2 on CUB-200-2011.

Type Method 800 labels 5k labels
1 Fine-Tuning (baseline) 20.04 71.50
Co-Tuning 20.99 71.61
SSL Mean Teacher 28.13 71.26
FixMatch 21.18 71.28
Combine Co-Tuning + Mean Teacher| 28.43 72.21
Co-Tuning + FixMatch 21.08 71.40
Self-Tuning (ours) 36.80 74.56




Experiments (Ablation studies)

Table 5. Ablation studies of Self-Tuning on Stanford Cars.

Perspective Method 15%  30%
w/ CE loss 40.93 67.02
Loss Function w/ CL loss 46.29 68.82
w/ PGC loss 72.50 83.58
w/o Lpgc 58.82  81.71
w/o LPGC 58.85 77.52
Info. Exploration | separate queue 70.43  80.78
unified exploration | 72.50 83.58




Experiments (Sensitivity Analysis & Others)
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