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§ Dual Model Framework
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Figure 2: An overview of our Humble Teacher approach. The teacher model produces soft pseudo-labels for the student to
learn from, and 1s updated via exponential moving average (EMA).




F overview & Supervised Branch

Semi-supervised: L =Lg+ n—UﬁLU
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where ngr, ng are the numbers of unlabeled and labeled im-
ages, and [ is set to (.5 by default.

Augmentation:
- Weak(flip, resize)

- Strong [Based on weak] (color change, sharpness, contrast, Gaussian noise, cutout)
Without rotation/translation
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Whieacher = 0Whieacher + (1 — Q)Wstudent where we set « = 0.999
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f = ROIAlign(fp, P),

f = ROIAlign(fg, P),
Pas = 0.5(C(f) + C(f)),
oreg = 0.5(R(f) + T(R(f)))-




' Experiments
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Figure 1: Comparing CSD [19], STAC [40], and our ap-
proach trained on full MS-COCO train 2017 with 1%, 2%,
5%, and 10% labeled over five runs using the splits in
Sec. 4.1. Our approach consistently outperforms others.
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Model [Labeled Dataset Unlabeled Dataset APS50 AP

Supervised model VOCO07 N/A 76.3  42.60
Supervised model VOCO07 + VOCI12 N/A 82.17 54.29
CSD? VOCO07 VOCI12 76.76 42.71
STAC [40] VOCO07 VOCI12 7745 44.64
Humble teacher (ours) VOCO07 VOCI12 80.94 53.04
CSD? VOC07 VOCI2 + MS-COCO20 (2017) 77.10 43.62
STAC [40] VOCO07 VOCI2 + MS-COCO20 (2017) 79.08 46.01
Humble teacher (ours) VOCO07 VOCI2 + MS-COCO20 (2017) 81.29 5441

Table 1: Results on Pascal VOC, evaluated on the VOCOY test set. Our model consistently outperforms others in all ex-
periment setups. CSD* is our ResNet-50-based re-implementation, which achieves better performance than the original
CSD [19].
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' Experiments

Percentage labeled 1% 2% 5% 10%
Supervised model 9.05%0.16 12.70£0.15 18.47+0.22 23.86£0.81
CSD? 11.12+£0.15 (+2.07) 14.15+0.13 (4+1.45) 18.79+0.13 (+0.32) 22.76+0.09 (—1.10)
STAC [40] 13.97+£0.35 (+4.92) 18.25x0.25 (+5.55) 24.38+0.12 (+5.91) 28.64L0.21 (+4.78)

Humble teacher (ours) 16.961-0.38 (+-7.91) 21.72+0.24 (+9.02) 27.70£0.15 (+9.23) 31.61+0.28 (+7.74)

Table 2: The mAP (50:95) results on MS-COCO val 2017 by models trained on different percentage of labeled MS-COCO
train 2017. All models are with the ResNet-50 backbone. CSD* is our re-implementation with better performance. Our
method consistently outperforms others.
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' Experiments

Model (Faster R-CNN with Resnet-50) AP Model (Cascade R-CNN with ResNet-152) AP
Base supervised model 37.63 Base supervised model 50.7
MOCOvV2 + MS-COCO Unlabeled [ /] 35.29 Humble teacher (ours) 53.8 (+3.1)
MOCOV2 + ImageNet-1M [ 7] 40.80

MOCOV2 + Instagram-1B [ 7] 41.10 Table 4: The mAP (50:95) results on MS-COCO test-dev
Proposal learning [7] 384 2017 by models trained on MS-COCO train 2017 + MS-
CSD* 38.52(+0.89) COCO unlabeled.

STAC [40] 39.21(+1.58)

Humble teacher (ours) 42.37(+4.74)

Model (Cascade R-CNN with ResNet-152) AP

Base supervised model 50.23

Humble teacher (ours) 53.38 (+3.15)

Table 3: The mAP (50:95) results on MS-COCO val 2017
by models trained on MS-COCO train 2017 + MS-COCO
unlabeled. CSD* is with a ResNet-50 backbone.




' Ablation
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(a) Comparison between models with different
number of region proposals used in unsupervised

loss. The student-teacher framework is jointly
trained on the 10% labeled and 90% unlabeled
MS-COCO train 2017 split.
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(b) Comparison between teacher and student per-
formance on the 10% labeled MS-COCO train
2017 setup. The student-teacher framework is
jointly trained on the 10% labeled and 90% un-
labeled MS-COCO train 2017 split.
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(c) Teacher models’ performance on unlabeled
data. Both models are trained on 10% labeled MS-
COCO train 2017 with the remaining 90% as un-
labeled.

Figure 3: Ablation study on hyperparameters and hard/soft labels.




' Ablation

Model AP
No update 27.26+0.21
Copy weights from student to teacher every 10K iters  28.61+0.18
EMA update at every iter 31.61+0.28

Table 5: Comparison between different update rules on MS-
COCO train 2017 with 10% data labeled. The mean and
standard deviation over five data splits are reported (the
same five splits of MS-COCO train 2017 as in Sec. 4.1).
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Model AP

With hard label  27.971-0.13
With soft label 30.97+0.16

Table 6: Comparison between training on soft label and
hard label when 10% labeled MS-COCO train 2017 1s pro-
vided. The mean and standard deviation over five data splits

are reported (the same five splits of MS-COCO train 2017
described in Sec. 4.1).
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1. Iteration-wise EMA teacher update

2. Soft label with a balanced number of teacher’ s region proposals

3. Data ensemble for the teacher
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