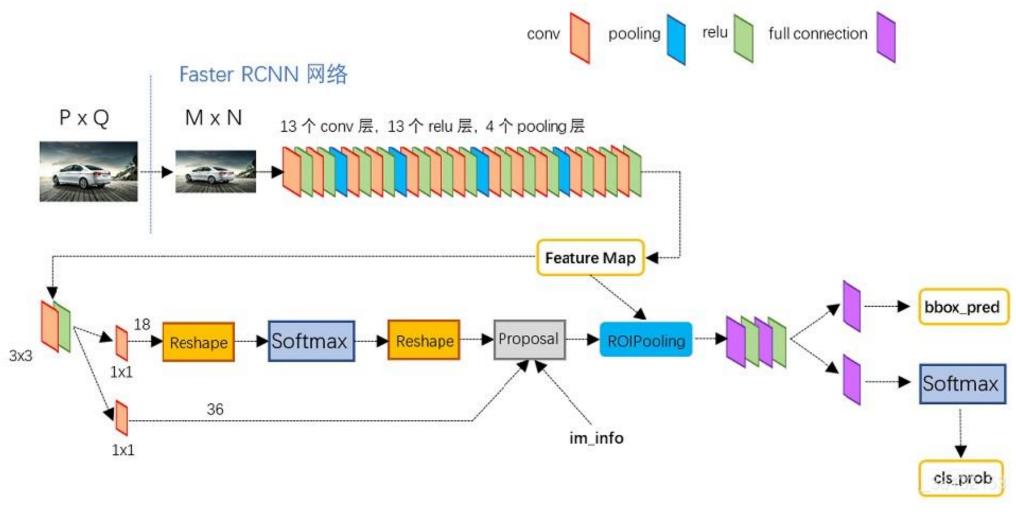


Humble Teachers Teach Better Students for Semi-Supervised Object Detection

```
Yihe Tang †,* Weifeng Chen ‡ Yijun Luo ‡ Yuting Zhang ‡ Carnegie Mellon University, ‡ Amazon Web Services
```

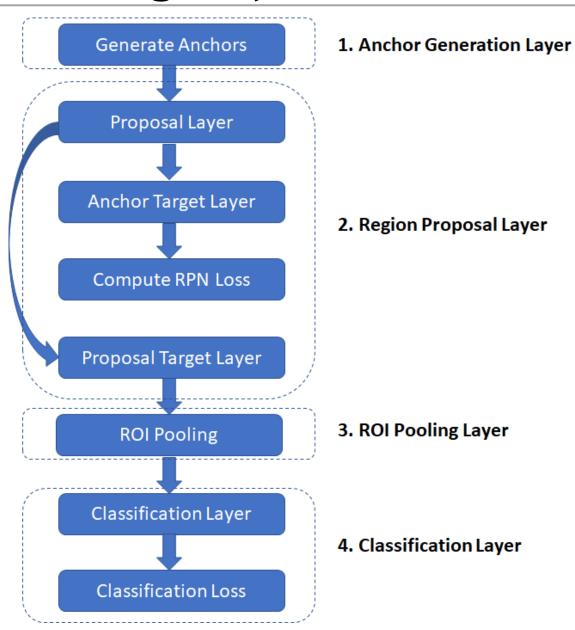
tangacademic@gmail.com {weifec, yijunl, yutingzh}@amazon.com

CVPR 2021


Contents

- 1. Dual Model Framework
- 2. Overview & Supervised Branch
- 3. Unsupervised Branch
- 4. Results
- 5. Takeaways

Two-stage object detectors



RPN (region proposal network)

ROI (region of interest)

Two-stage object detectors

RPN (region proposal network):

为第二阶段提供高质量的目标候选框

ROI (region of interest):

在rpn提供的proposal的基础上,筛选出第二阶段的训练样本,并提取相应的特征,用于组建第二阶段的训练网络

Dual Model Framework

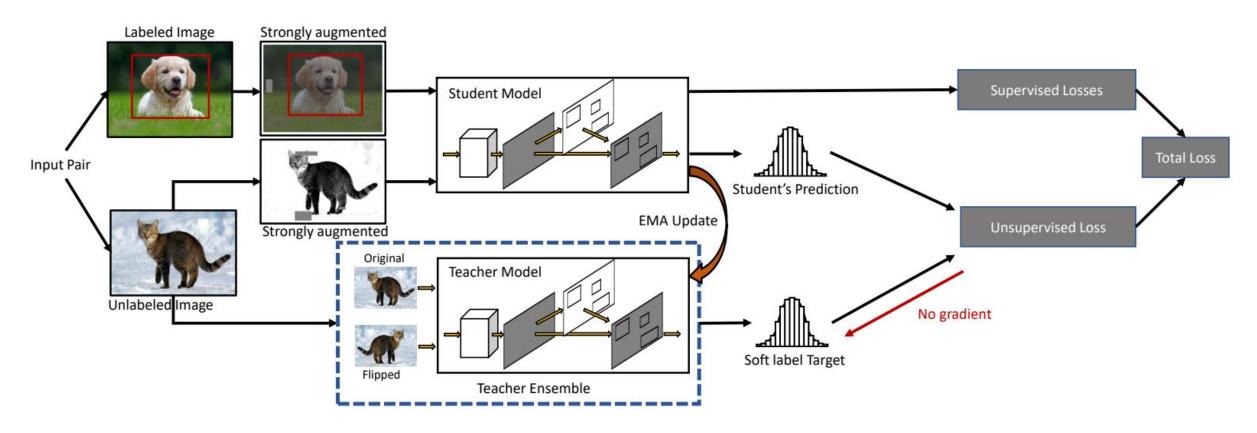
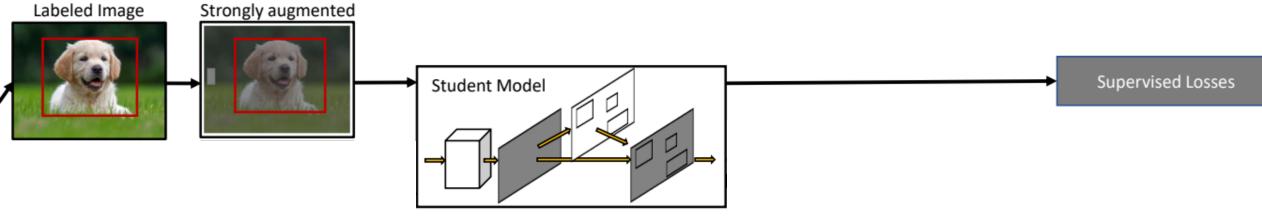


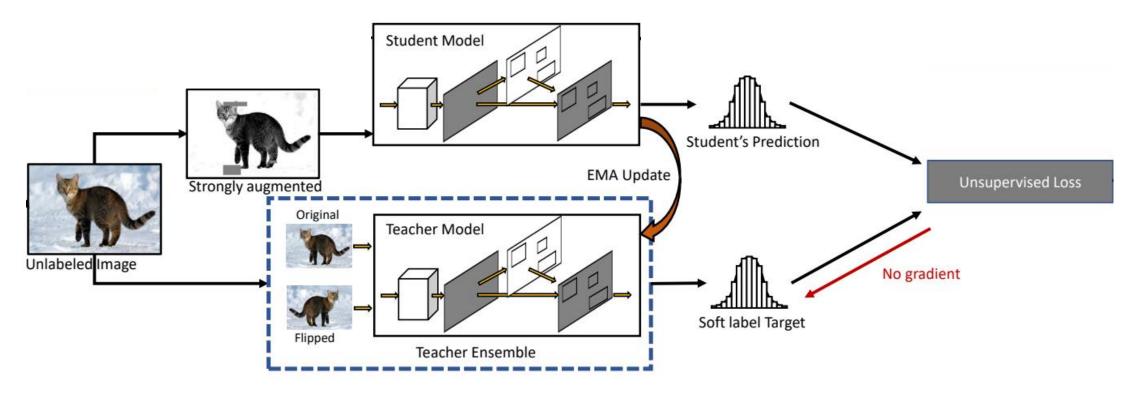
Figure 2: An overview of our Humble Teacher approach. The teacher model produces soft pseudo-labels for the student to learn from, and is updated via exponential moving average (EMA).


Overview & Supervised Branch

Semi-supervised:
$$L = L_S + \frac{n_U}{n_S} \beta L_U$$

where n_U, n_S are the numbers of unlabeled and labeled images, and β is set to 0.5 by default.

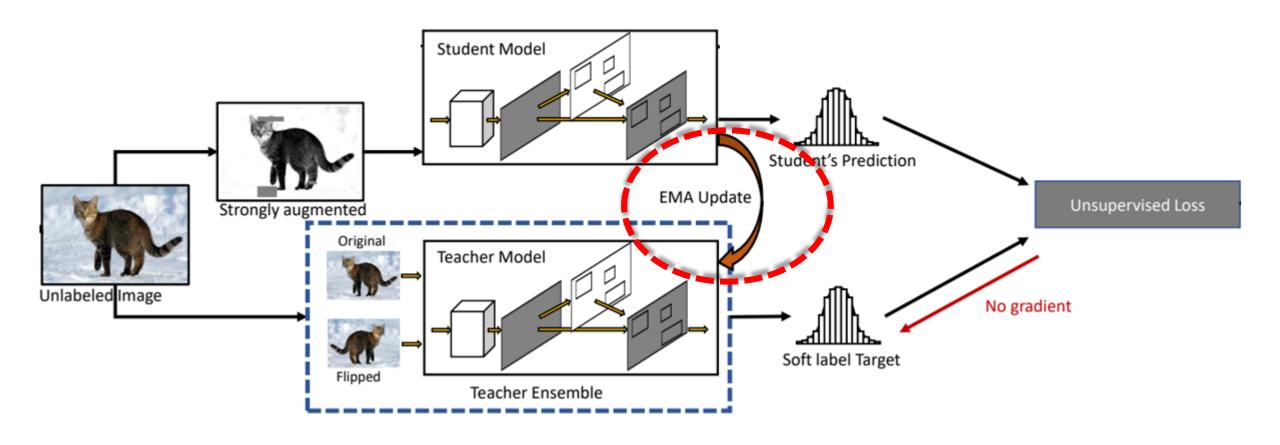
Supervised loss: {classification loss, localization loss} x {RPN head, ROI head}


Augmentation:

- Weak(flip, resize)
- Strong [Based on weak] (color change, sharpness, contrast, Gaussian noise, cutout) Without rotation/translation

$$L_S = L_{\rm cls}^{\rm rpn} + L_{\rm loc}^{\rm rpn} + L_{\rm cls}^{\rm roi} + L_{\rm loc}^{\rm roi}$$

Unsupervised Branch


RPN & ROI: Classification loss: KLD Localization loss: L2

ROI: Feed proposals from teacher network to both networks

$$L_U^{\text{rpn}} = \sum_{i \in S_A} D_{KL}(\mathbf{t}_{\text{cls}}^{rpn,i} \| \mathbf{s}_{\text{cls}}^{rpn,i}) + \| \mathbf{t}_{\text{reg}}^{rpn,i} - \mathbf{s}_{\text{reg}}^{rpn,i} \|_2 \qquad L_U^{\text{roi}} = \sum_{i \in S_P} D_{KL}(\mathbf{t}_{\text{cls}}^{roi,i} \| \mathbf{s}_{\text{cls}}^{roi,i}) + \| \mathbf{t}_{\text{reg}}^{roi,i} - \mathbf{s}_{\text{reg}}^{roi,i} \|_2$$

Exponential Moving Average for the Teacher Model Update



$$W_{\text{teacher}} = \alpha W_{\text{teacher}} + (1 - \alpha) W_{\text{student}}$$

where we set $\alpha = 0.999$

Teacher Ensemble with Horizontal Flipping

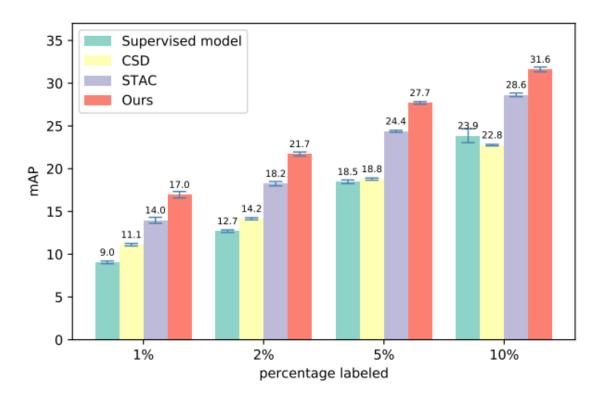


Figure 1: Comparing CSD [19], STAC [40], and our approach trained on full *MS-COCO train* 2017 with 1%, 2%, 5%, and 10% labeled over five runs using the splits in Sec. 4.1. Our approach consistently outperforms others.

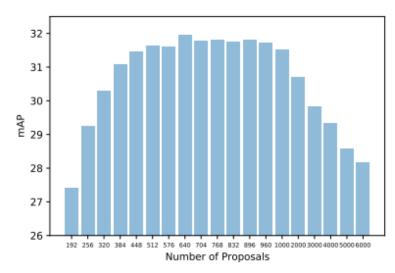
Model	Labeled Dataset	Unlabeled Dataset	AP50	AP
Supervised model	VOC07	N/A	76.3	42.60
Supervised model	VOC07 + VOC12	N/A	82.17	54.29
CSD [‡]	VOC07	VOC12	76.76	42.71
STAC [40]	VOC07	VOC12	77.45	44.64
Humble teacher (ours)	VOC07	VOC12	80.94	53.04
CSD [‡]	VOC07	VOC12 + MS-COCO20 (2017)	77.10	43.62
STAC [40]	VOC07	VOC12 + MS-COCO20 (2017)	79.08	46.01
Humble teacher (ours)	VOC07	VOC12 + MS-COCO20 (2017)	81.29	54.41

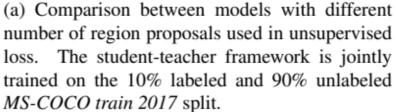
Table 1: Results on Pascal VOC, evaluated on the *VOC07 test* set. Our model consistently outperforms others in all experiment setups. CSD[‡] is our ResNet-50-based re-implementation, which achieves better performance than the original CSD [19].

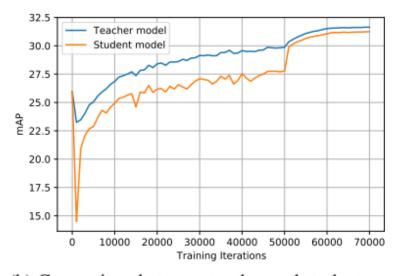
Percentage labeled	1%	2%	5%	10%
Supervised model	$9.05{\pm}0.16$	12.70 ± 0.15	18.47 ± 0.22	23.86 ± 0.81
CSD^{\ddagger}	$11.12\pm0.15\ (+2.07)$	$14.15\pm0.13\ (+1.45)$	$18.79 \pm 0.13 \ (+0.32)$	$22.76\pm0.09\;(-1.10)$
STAC [40]	13.97±0.35 (+4.92)	$18.25 \pm 0.25 \ (+5.55)$	$24.38\pm0.12\ (+5.91)$	$28.64 \pm 0.21 \ (+4.78)$
Humble teacher (ours)	$16.96\pm0.38\ (+7.91)$	21.72±0.24 (+9.02)	27.70±0.15 (+9.23)	$31.61 \pm 0.28 \ (+7.74)$

Table 2: The mAP (50:95) results on MS-COCO val 2017 by models trained on different percentage of labeled MS-COCO train 2017. All models are with the ResNet-50 backbone. CSD[‡] is our re-implementation with better performance. Our method consistently outperforms others.

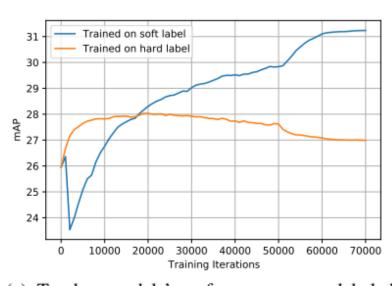
Model (Faster R-CNN with Resnet-50)	AP
Base supervised model	37.63
MOCOv2 + MS-COCO Unlabeled [7]	35.29
MOCOv2 + ImageNet-1M [7]	40.80
MOCOv2 + Instagram-1B [7]	41.10
Proposal learning [42]	38.4
CSD^{\ddagger}	38.52(+0.89)
STAC [40]	39.21(+1.58)
Humble teacher (ours)	42.37(+4.74)
Model (Cascade R-CNN with ResNet-152)	AP
Base supervised model	50.23
Humble teacher (ours)	53.38 (+3.15)


Table 3: The mAP (50:95) results on MS-COCO val 2017 by models trained on MS-COCO train 2017 + MS-COCO unlabeled. CSD^{\ddagger} is with a ResNet-50 backbone.


Model (Cascade R-CNN with ResNet-152)	AP
Base supervised model	50.7
Humble teacher (ours)	53.8 (+3.1)


Table 4: The mAP (50:95) results on *MS-COCO test-dev* **2017** by models trained on *MS-COCO train* 2017 + *MS-COCO unlabeled*.

Ablation



(b) Comparison between teacher and student performance on the 10% labeled *MS-COCO train* 2017 setup. The student-teacher framework is jointly trained on the 10% labeled and 90% unlabeled *MS-COCO train* 2017 split.

(c) Teacher models' performance on unlabeled data. Both models are trained on 10% labeled *MS-COCO train 2017* with the remaining 90% as unlabeled.

Figure 3: Ablation study on hyperparameters and hard/soft labels.

Ablation

Model	AP
No update	27.26 ± 0.21
Copy weights from student to teacher every 10K iters	28.61 ± 0.18
EMA update at every iter	31.61 ± 0.28

Table 5: Comparison between different update rules on *MS-COCO train 2017* with 10% data labeled. The mean and standard deviation over five data splits are reported (the same five splits of *MS-COCO train 2017* as in Sec. 4.1).

Model	AP
With hard label	27.97±0.13
With soft label	30.97 ± 0.16

Table 6: Comparison between training on soft label and hard label when 10% labeled *MS-COCO train 2017* is provided. The mean and standard deviation over five data splits are reported (the same five splits of *MS-COCO train 2017* described in Sec. 4.1).

Conclusion

- 1. Iteration-wise EMA teacher update
- 2. Soft label with a balanced number of teacher's region proposals
- 3. Data ensemble for the teacher

THANKS