

Learning with Biased Complementary Labels

Xiyu Yu¹, Tongliang Liu¹, Mingming Gong^{2,3}, and Dacheng Tao¹

¹ UBTECH Sydney AI Centre, SIT, FEIT, The University of Sydney {xiyu0300@uni., tongliang.liu@, dacheng.tao@}sydney.edu.au ² Department of Philosophy, Carnegie Mellon University ³ Department of Biomedical Informatics, University of Pittsburgh mig73@pitt.edu

ECCV 2018

Introduction

Sometimes, precisely labeling an example is costly...

True Label

Meerkat

Prairie Dog

Monkey

Labeling the image requires: • expert knowledge

time-consuming work

Compared to "which class it belongs"

it is much more easy to see "which class it does not belong"

Review: Learning from Complementary Label

Problem Formulation

$$x \leftrightarrow y, \ \overline{y} \quad \{(x_i, \overline{y}_i)\}_{i=1}^n \longrightarrow \text{ learn a multi-class classifier}$$

$$\square \text{ A basic assumption} \quad \overline{p}(x, \overline{y}) = \frac{1}{K-1} \sum_{y \neq \overline{y}} p(x, y) \quad ?$$

$$\text{All } p(x, y) \text{ for } y \neq \overline{y} \text{ equally contribute to } \overline{p}(x, \overline{y})$$

$$\overline{\eta}_k(x) \coloneqq \mathbb{P}(\overline{Y} = k | X = x) \quad \overline{p}(x) = Trp(x)$$

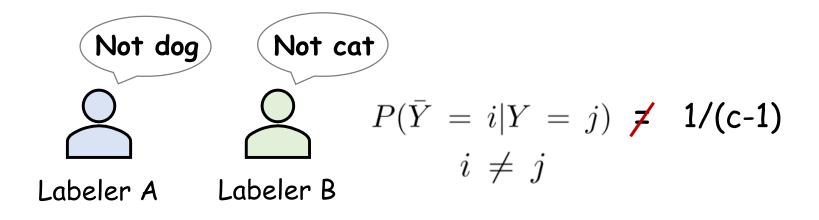
$$\eta_k(x) := \mathbb{P}(Y = k | X = x)$$
 $\eta(x) = T \eta(x)$
 $\mathsf{T}=$
 $1/2$
 0
 $1/2$
 $1/2$
 $1/2$
 0

 \Box The unbiased estimate: $R(f) = (K-1)\mathbb{E}_{\overline{p}(\boldsymbol{x},\overline{y})}\left[\mathcal{L}(f(\boldsymbol{x}),\overline{y})\right] - M_1 + M_2$

Motivation

Revisiting the example...

Prairie Dog



Labelers provide complementary labels based on both the **observation** and their **experience**.

Biasedness

How to capture such biasedness?

$$P(\bar{Y} = i|Y = j)$$

Method

$$P(Y|X) ? P(\bar{Y} = i|Y = j) P(\bar{Y}|X)$$

$$P(\bar{Y} = j|X) = \sum_{i \neq j} P(\bar{Y} = j, Y = i|X)$$

$$q(X) = \sum_{i \neq j} P(\bar{Y} = j|Y = i, X) P(Y = i|X)$$

$$= \sum_{i \neq j} P(\bar{Y} = j|Y = i) P(\bar{Y} = i|X)$$

$$Q_{ij} = P(\bar{Y} = j|Y = i)$$

$$q(X) = \mathbf{Q}^{\top} \mathbf{g}(X)$$

$$\bar{\ell}(f(X), \bar{Y}) = \ell(\mathbf{q}(X), \bar{Y})$$

$$P(\bar{Y}|X)$$

$$P(\bar{Y}|X)$$

$$P(\bar{Y} = \bar{y}|X = \mathbf{x}, Y = y)$$

$$P(\bar{Y} = \bar{y}|Y = y)$$

$$Prairie Dog$$

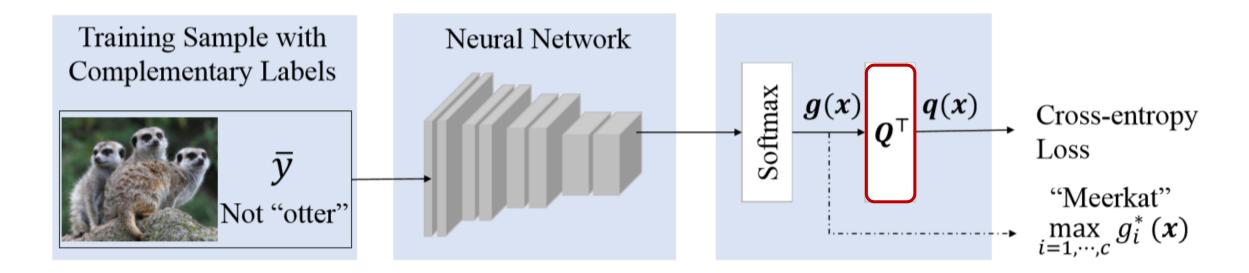
$$Prairie Dog$$

$$Not \ \operatorname{dog}$$

Method

$$\mathbf{q}(X) = \mathbf{Q}^{\top} \mathbf{g}(X) \quad \blacksquare \quad \mathbf{Q}^{-\top} \mathbf{q}$$

Learning with DNN



$$\mathbf{q}^* \quad \blacksquare \quad q_i^*(X) = P(\bar{Y} = i|X), \forall i \in [c] \quad \blacksquare \quad \mathbf{g}^* \text{ and } f^*$$

Method

Estimate Q

$$P(\bar{Y} = \bar{y}|X) = \sum_{y' \neq \bar{y}} P(\bar{Y} = \bar{y}|Y = y')P(Y = y'|X)$$

Assumption 2 (Anchor Set Condition) For each class y, there exists an anchor set $S_{\mathbf{x}|y} \subset \mathcal{X}$ such that $P(Y = y|X = \mathbf{x}) = 1$ and $P(Y = y'|X = \mathbf{x}) = 0$, $\forall y' \in \mathcal{Y} \setminus \{y\}, \mathbf{x} \in S_{\mathbf{x}|y}$.

Find some $\mathbf{x} \in S_{\mathbf{x}|y}$ $P(Y = y|X = \mathbf{x}) = 1$ $P(Y = y'|X = \mathbf{x}) = \mathbf{0}$ $P(\bar{Y} = \bar{y}|X = \mathbf{x}) = P(\bar{Y} = \bar{y}|Y = y)$

Optimality of the classifier

Assumption 1 By minimizing the expected risk R(f), the optimal mapping \mathbf{g}^* satisfies $g_i^*(X) = P(Y = i|X), \forall i \in [c]$.

Theorem 1 Suppose that **Q** is invertible and Assumption 1 is satisfied, then the minimizer \bar{f}^* of $\bar{R}(f)$ is also the minimizer f^* of R(f); that is, $\bar{f}^* = f^*$.

 $\bar{f}^* = \arg\min_{f\in\mathcal{F}}\bar{R}(f) \qquad \mathbf{q}(X) = \mathbf{Q}^{\top}\mathbf{g}(X)$

Convergence analysis

Corollary 1 Suppose $\bar{\pi}_i = P(\bar{Y} = i)$ is given. Let the loss function be upper bounded by M. Then, for any $\delta > 0$, with the probability $1 - c\delta$, we have

$$\bar{R}(\bar{f}_n) - \bar{R}(\bar{f}^*) \le \sum_{i=1}^c \left(4c\bar{\pi}_i \Re_{n_i}(\mathcal{H}) + 2\bar{\pi}_i M \sqrt{\frac{\log 1/\delta}{2n_i}} \right).$$
(13)

Experiments

Table 1. Classification accuracy on USPS and UCI datasets: the means and standard deviations of classification accuracy over 20 trials in percentages are reported. "#train" is the number of training and validation examples in each class. "#test" is the number of test examples in each class.

Dataset	c	d	#train	#test	PC/S	PL	ML	LM (ours)
WAVEFORM1	$1 \sim 3$	21	1226	398	85.8 (0.5)	85.7(0.9)	79.3(4.8)	85.1 (0.6)
WAVEFORM2	$1 \sim 3$	40	1227	408	84.7 (1.3)	84.6 (0.8)	74.9(5.2)	85.5(1.1)
SATIMAGE	$1 \sim 7$	36	415	211	68.7(5.4)	60.7(3.7)	33.6(6.2)	69.3(3.6)
PENDIGITS	$1 \sim 5$	16	719	336	87.0 (2.9)	76.2(3.3)	44.7(9.6)	92.7(3.7)
	$6 \sim 10$		719	335	78.4(4.6)	71.1(3.3)	38.4(9.6)	85.8(1.3)
	even #		719	336	90.8 (2.4)	76.8(1.6)	43.8(5.1)	90.0(1.0)
	odd #		719	335	76.0(5.4)	67.4(2.6)	40.2(8.0)	86.5(0.5)
	$1 \sim 10$		719	335	38.0(4.3)	33.2(3.8)	16.1 (4.6)	62.8(5.6)
DRIVE	$1 \sim 5$	48	3955	1326	89.1 (4.0)	77.7(1.5)	31.1(3.5)	93.3 (4.6)
	$6 \sim 10$		3923	1313	88.8(1.8)	78.5(2.6)	30.4(7.2)	92.8(0.9)
	even #		3925	1283	81.8(3.4)	63.9(1.8)	29.7(6.3)	84.3(0.7)
	odd #		3939	1278	85.4 (4.2)	74.9(3.2)	27.6(5.8)	85.9(2.1)
	$1 \sim 10$		3925	1269	40.8(4.3)	32.0(4.1)	12.7(3.1)	$75.1 \ (3.2)$
	$1 \sim 5$	16	565	171	79.7 (5.4)	75.1(4.4)	28.3(10.4)	84.3(1.5)
	$6 \sim 10$		550	178	76.2(6.2)	66.8(2.5)	34.0(6.9)	84.4(1.0)
LETTER	$11 \sim 15$		556	177	78.3(4.1)	67.4(3.4)	28.6(5.0)	88.3(1.9)
	$16 \sim 20$		550	184	77.2(3.2)	68.4(2.1)	32.7(6.4)	85.2(0.7)
	$21 \sim 25$		585	167	80.4(4.2)	75.1(1.9)	32.0(5.7)	82.5(1.0)
	$1\sim 25$		550	167	$5.1 \ (2.1)$	5.0(1.0)	5.2(1.1)	7.0(3.6)
USPS	$1 \sim 5$	256	652	166	79.1 (3.1)	70.3(3.2)	44.4(8.9)	86.4 (4.5)
	$6 \sim 10$		542	147	69.5(6.5)	66.1(2.4)	37.3 (8.8)	88.1 (2.7)
	even #		556	147	67.4(5.4)	66.2(2.3)	35.7(6.6)	79.5(5.4)
	odd #		542	147	77.5(4.5)	69.3(3.1)	36.6(7.5)	86.3(3.1)
	$1 \sim 10$		542	127	30.7 (4.4)	26.0(3.5)	13.3(5.4)	37.2 (5.4)

Experiments

Table 2. Classification accuracy on MNIST: the means and standard deviations of classification accuracy over five trials in percentages are reported. "TL" denotes the result of learning with true labels. "LM/T" and "LM/E" refer to our method with the true \mathbf{Q} and the estimated one, respectively.

Method	Uniform	Without0	With0	
TL	99.12	99.12	99.12	
PC/S	86.59 ± 3.99	76.03 ± 3.34	29.12 ± 1.94	
LM/T	97.18 ± 0.45	97.65 ± 0.15	98.63 ± 0.05	
LM/E	96.33 ± 0.31	97.04 ± 0.31	98.61 ± 0.05	

Table 3. Classification accuracy on CIFAR10: the means and standard deviations of classification accuracy over five trials in percentages are reported. "TL" denotes the result of learning with true labels. "LM/T" and "LM/E" refer to our method with the true \mathbf{Q} and the estimated one, respectively.

Method	Uniform	Without0	With0
TL	90.78	90.78	90.78
	41.19 ± 0.04		
LM/T	73.38 ± 1.06	78.80 ± 0.45	85.32 ± 1.11
LM/E	42.96 ± 0.76	70.56 ± 0.34	84.60 ± 0.14

Thanks