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I Motivation

SSL:Many recent approaches for SSL add a loss term which is computed on
unlabeled data and encourages the model to generalize better to unseen data.

Consistency-based SSL: model is consistent in its decisions between a sample and
its meaningfully distorted versions.

v

An AL selection strategy: a sample with 1ts distorted versions that yields low consistency
in predictions indicates that: the SSL. model may be incapable of distilling usetul
information from that unlabeled sample - the sample need to be labeled.



I Consistency-based Semi-AL
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I Consistency-based Semi-AL

Algorithm 1 A semi-supervised learning based AL framework

Require: Unlabeled data pool D, the total number of steps T', selected sample batch
set B, AL batch size K| start size Ko < |D|
By « uniformly sampling from D with |Bg| = Ko
Uy D\Bg
Lo «+ {(z,J(x)) : x € Bo}, where J(x) stands for the assigned label of z.
fort=0,...,7T—1do
(training) M; < arg min,, {ﬁ 2 @yyer, Li(z, y, M) + ﬁ > zcv, Lulz, M)}
(selection) Biy1 < argmaxp-y, {C(B, M:), s.t. |B| = K}
(labeling) Lit1 — Ly U{(z,J(z)) : x € Bi41}

(pOOl update) Ut+1 +— Uy \Bt—}-l
end for

My < arg min,, {ILI—TI Z(m,y}eLT Li(x,y, M) + ﬁ > vevuqp Lulz, M)}
return M

Lo(z,M)=DPY =4L|z,M),P(Y =z, M)), D: L2norm

C(BvM) — ZmeB g(:z:, M)

J
E(x,M) =Y Var [P(f/ — tlz, M), P(Y = f|F1, M), ..., P(¥" = £|z, M)] ,
=1

/



Experiment

Comparison with selection baselines under SSL
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Fig. 2. Model performance comparison with different sample selection methods on
CIFAR-10 and CIFAR-100. Solid lines indicate the averaged results over 5 trials. Shad-
ows represent standard deviation



I Experiment

Comparison with supervised AL methods

Comparison with SOTA on cifar100 . Comparison with SOTA on imagenet
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Fig. 3. Comparison with recent AL methods on CIFAR-100 and ImageNet. Our results
on CIFAR-100 and ImageNet are averaged over 5 and 3 trials, respectively



IAnaIysis

Uncertainty and overconfident mis-classification
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Fig. 4. Left: Number of overconfident mis-classified samples in top 1% samples ranked
by different methods. Overconfident samples are defined as those having the highest
class probability larger than threshold. Right: the average entropy of unlabeled samples
ranked by different selection metrics. The ranked samples are divided into 100 groups
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I Analysi

Smaple Diversity
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Fig. 5. Average distance between samples (top-left): the average pair-wise Lo distance
of top 1% unlabeled samples ranked by different selection metrics. Per-class error rate
vs. the class distribution of the selected samples are shown in bottom-left. Diversity
visualization (right): Dots and crosses indicate unlabeled (un-selected) samples and the
selected samples (top 100), respectively. Each color represent a ground truth class
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