Unsupervised Data Augmentation For Consistency Training

Qizhe Xie^{1,2}, Zihang Dai^{1,2}, Eduard Hovy², Minh-Thang Luong¹, Quoc V. Le¹ 1 Google Research, Brain Team, 2 Carnegie Mellon University

Motivation

- 1. Investigate the role of noise injection in consistency training and observe that advanced data augmentation methods, specifically those work best in supervised learning.
- 2. Despite the promising results, data augmentation is mostly regarded as the "cherry on the cake", which provides a steady but limited performance boost because these augmentations has so far only been applied to a set of labeled examples which is usually of a small size.

The UDA Framework

 $\min_{\theta} \mathcal{J}(\theta) = \mathbb{E}_{x \sim p_L(x)} \left[-\log p_{\theta}(f^*(x) \mid x) \right] + \lambda \mathbb{E}_{x \sim p_U(x)} \mathbb{E}_{\hat{x} \sim q(\hat{x}|x)} \left[\operatorname{CE} \left(p_{\tilde{\theta}}(y \mid x) \| p_{\theta}(y \mid \hat{x}) \right) \right]$

Methods of augment on CV

AutoAugment

Use a search method to combine all image processing transformations in the Python Image Library (PIL) to find a good augmentation strategy.

RandAugment

Instead of search, but uniformly sample from the same set of augmentation transformations in PIL

Methods of augment on NLP

Back-translation

Translate an existing example x in language A into another language B and then translating it back into A to obtain an augmented example \hat{x}

• Word replacing with TF-IDF

Replace uninformative words with low TF-IDF scores while keeping those with high TF-IDF values.

Additional Training Techniques

Confidence-based masking

In each minibatch, the consistency loss term is computed only on examples whose highest probability among classification categories is greater than a threshold β .

$$\frac{1}{|B|} \sum_{x \in B} I(\max_{y'} p_{\tilde{\theta}}(y' \mid x) > \beta) \operatorname{CE}\left(p_{\tilde{\theta}}^{(sharp)}(y \mid x) \| p_{\theta}(y \mid \hat{x})\right)$$

Sharpening Predictions

Regularizing the predictions to have low entropy has been shown to be beneficial

$$p_{\tilde{\theta}}^{(sharp)}(y \mid x) = \frac{\exp(z_y/\tau)}{\sum_{y'} \exp(z_{y'}/\tau)}$$

• Domain-relevance Data Filtering

Use baseline model trained on the in-domain data to infer the labels of data in a large out-of-domain dataset and pick out examples that the model is most confident about.

Correlation Between Supervised And Semi-supervised Performances

Augmentation (# Sup examples)	Sup (50k)	Semi-Sup (4k)	 Augmentation (# Sup examples)	Sup (650k)	Semi-sup (2.5k)
Crop & flip	5.36	10.94	 ×	38.36	50.80
Cutout	4.42	5.43	Switchout	37.24	43.38
RandAugment	4.23	4.32	Back-translation	36.71	41.35

Table 1: Error rates on CIFAR-10.

Table 2: Error rate on Yelp-5.

Algorithm Comparison On Vision Semi-supervised Learning Benchmarks

Method	Model	# Param	CIFAR-10 (4k)	SVHN (1k)
Π-Model (Laine & Aila, 2016)	Conv-Large	3.1M	12.36 ± 0.31	4.82 ± 0.17
Mean Teacher (Tarvainen & Valpola, 2017)	Conv-Large	3.1M	12.31 ± 0.28	3.95 ± 0.19
VAT + EntMin (Miyato et al., 2018)	Conv-Large	3.1M	10.55 ± 0.05	3.86 ± 0.11
SNTG (Luo et al., 2018)	Conv-Large	3.1M	10.93 ± 0.14	3.86 ± 0.27
VAdD (Park et al., 2018)	Conv-Large	3.1M	11.32 ± 0.11	4.16 ± 0.08
Fast-SWA (Athiwaratkun et al., 2018)	Conv-Large	3.1M	9.05	-
ICT (Verma et al., 2019)	Conv-Large	3.1M	7.29 ± 0.02	3.89 ± 0.04
Pseudo-Label (Lee, 2013)	WRN-28-2	1.5M	16.21 ± 0.11	7.62 ± 0.29
LGA + VAT (Jackson & Schulman, 2019)	WRN-28-2	1.5M	12.06 ± 0.19	6.58 ± 0.36
mixmixup (Hataya & Nakayama, 2019)	WRN-28-2	1.5M	10	-
ICT (Verma et al., 2019)	WRN-28-2	1.5M	7.66 ± 0.17	3.53 ± 0.07
MixMatch (Berthelot et al., 2019)	WRN-28-2	1.5M	6.24 ± 0.06	2.89 ± 0.06
Mean Teacher (Tarvainen & Valpola, 2017)	Shake-Shake	26M	6.28 ± 0.15	-
Fast-SWA (Athiwaratkun et al., 2018)	Shake-Shake	26M	5.0	-
MixMatch (Berthelot et al., 2019)	WRN	26M	4.95 ± 0.08	-
UDA (RandAugment)	WRN-28-2	1.5M	4.32 ± 0.08	$\textbf{2.23} \pm \textbf{0.07}$
UDA (RandAugment)	Shake-Shake	26M	3.7	-
UDA (RandAugment)	PyramidNet	26M	2.7	-

EVALUATION ON TEXT CLASSIFICATION DATASETS

		Fı	ılly super	vised base	eline		
Datasets (# Sup examp	oles)	IMDb (25k)	Yelp-2 (560k)	Yelp-5 (650k)	Amazon-2 (3.6m)	Amazon-5 (3m)	DBpedia (560k)
Pre-BERT SOTA BERT _{LARGE}		4.32 4.51	2.16 1.89	29.98 29.32	3.32 2.63	34.81 <i>34.17</i>	0.70 <i>0.64</i>
		S	emi-super	rvised sett	ting		
Initialization	UDA	IMDb (20)	Yelp-2 (20)	Yelp-5 (2.5k)	Amazon-2 (20)	Amazon-5 (2.5k)	DBpedia (140)
Random	×	43.27 25.23	40.25 8.33	50.80 41.35	45.39 16.16	55.70 44.19	41.14 7.24
BERT _{BASE}	×	18.40 5.45	13.60 2.61	41.00 33.80	26.75 3.96	44.09 38.40	2.58 1.33
BERTLARGE	×	11.72 4.78	10.55 2.50	38.90 33.54	15.54 3.93	42.30 37.80	1.68 1.09
BERT _{FINETUNE}	×	6.50 4.20	2.94 2.05	32.39 32.08	12.17 3.50	37.32 37.12	-

SCALABILITY TEST ON THE IMAGENET DATASET

Methods	SSL	10%	100%
ResNet-50 w. RandAugment	×	55.09 / 77.26 58.84 / 80.56	77.28 / 93.73 78.43 / 94.37
UDA (RandAugment)	1	68.78 / 88.80	79.05 / 94.49