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Motivation

Traditional imitation learning requires demonstrations to contain actions for
corresponding states, which makes a large number of valuable learning
resources uselesss - e.g online videos.

Example.

We collect some videos of driving, and we would like to train an antonomous
driving agent.

Can we learn from state-only demonstrations?
Yes, Imitation from observation (IfO) provides solution to such problem.



Approach

Two component
Discrimnator: try to distinguish data generated by expert’s policy vs agent’s policy.
Agent’s policy: try to confuse discriminator by making data look like it was

generated by expert.

Problem formulation
min max Er[log(D(s,s"))] + Er, [log(l — D (s, S’))]
VA

(s,s’): state transition pair-data.
m: learned policy

g expert’s policy

D: 1- generated data; O-real data.



Algorithm

Algorithm 1 GAIfO

1: Initialize parametric policy 74 with random ¢
2: Initialize parametric discriminator Dy with random 6
3. Obtain state-only expert demonstration trajectories 7 =

{(s,5")}
4: while Policy Improves do
5 Execute 7y and store the resulting state transitions 7 =
{(s,s)}
6: Update Dy using loss mglx [ET[ []og(D (S, S’))]
(B log(Dg (s. )] + Ee [log(1 - Dy s, 5] _ /
(B [log(Dg s, )] + By [log(1 = Dy(s,')] + Ey, [log(1 — D(s,s")]
7: Update 74 by performing TRPO updates with reward func-
tion : ,
min E_[log(D(s,s"))]
~(Bex llog(1 = Do (5,51 "

8: end while

7: modify E, llog(1 — D(s,s"))] to E,[log(D(s,s"))]



Experiment
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1. Behavioral Cloning from Observation
2. Time Contrastive Networks (TCN)
3. Generative Adversarial Imitation Learning (GAIL)
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