DIVIDEMIX: LEARNING WITH NOISY LABELS AS SEMI-SUPERVISED LEARNING

Junnan Li, Richard Socher, Steven C.H. Hoi

Salesforce Research

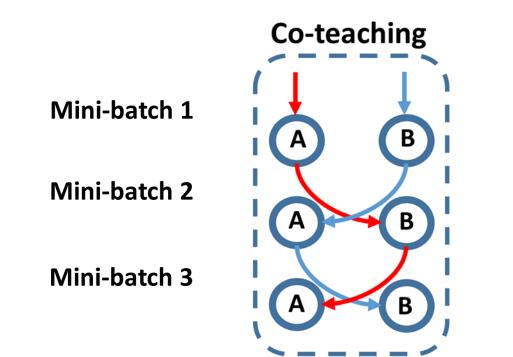
ICLR 2020

Contents

- Co-teaching
- MixMatch
- Methods
- Experiments

Co-teaching

• In each mini-batch of data, each network views its **small-loss instances** as the useful knowledge, and teaches such useful instances to its peer network for updating the parameters.



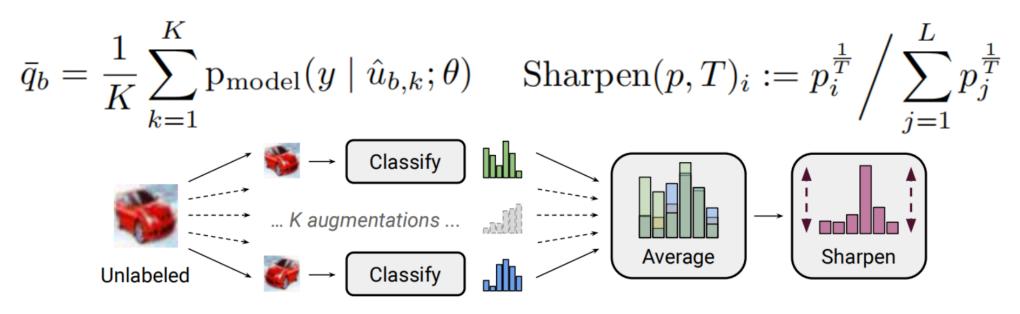
MixMatch

Data Augmentation

$$\hat{x}_b = \operatorname{Augment}(x_b)$$

 $\hat{u}_{b,k} = \operatorname{Augment}(\overline{u}_b), k \in (1, \dots, K)$ K augmentations

Label Guessing



MixMatch

■ MixUp

Mix both labeled examples and unlabeled examples with label guesses Corresponding labels probabilities (x1, p1), (x2, p2) we compute (x, p)

$$\lambda \sim \text{Beta}(\alpha, \alpha)$$
$$\lambda' = \max(\lambda, 1 - \lambda)$$
$$x' = \lambda' x_1 + (1 - \lambda') x_2$$
$$p' = \lambda' p_1 + (1 - \lambda') p_2$$

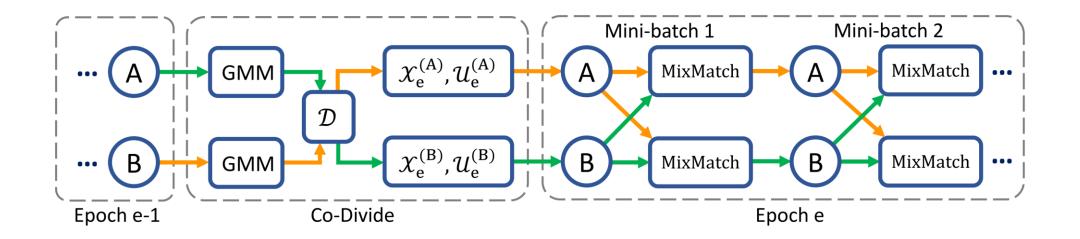
 $\hat{\mathcal{X}} = \left((\hat{x}_b, p_b); b \in (1, \dots, B) \right) // Augmented labeled examples and their labels$ $\hat{\mathcal{U}} = \left((\hat{u}_{b,k}, q_b); b \in (1, \dots, B), k \in (1, \dots, K) \right) // Augmented unlabeled examples, guessed labels$ $\mathcal{W} = Shuffle (Concat(\hat{\mathcal{X}}, \hat{\mathcal{U}})) // Combine and shuffle labeled and unlabeled data$ $<math display="block"> \mathcal{X}' = \left(\text{MixUp}(\hat{\mathcal{X}}_i, \mathcal{W}_i); i \in (1, \dots, |\hat{\mathcal{X}}|) \right) // Apply \text{MixUp to labeled data and entries from W}$ $\quad \mathcal{U}' = \left(\text{MixUp}(\hat{\mathcal{U}}_i, \mathcal{W}_{i+|\hat{\mathcal{X}}|}); i \in (1, \dots, |\hat{\mathcal{U}}|) \right) // Apply \text{MixUp to unlabeled data and the rest of W}$

MixMatch

Loss Function

$$\begin{split} \mathcal{X}', \mathcal{U}' &= \operatorname{MixMatch}(\mathcal{X}, \mathcal{U}, T, K, \alpha) \\ \mathcal{L}_{\mathcal{X}} &= \frac{1}{|\mathcal{X}'|} \sum_{x, p \in \mathcal{X}'} \operatorname{H}(p, \operatorname{p_{model}}(y \mid x; \theta)) \\ \mathcal{L}_{\mathcal{U}} &= \frac{1}{L|\mathcal{U}'|} \sum_{u, q \in \mathcal{U}'} \|q - \operatorname{p_{model}}(y \mid u; \theta)\|_{2}^{2} \\ \mathcal{L} &= \mathcal{L}_{\mathcal{X}} + \lambda_{\mathcal{U}} \mathcal{L}_{\mathcal{U}} \end{split}$$

Methods



Co-Divide

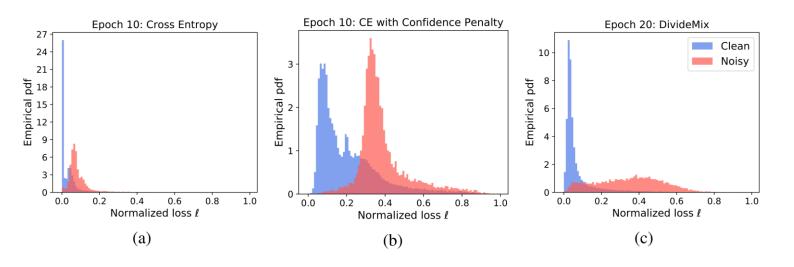
- "Warm up" the model for a few epochs by training on all data using the standard cross-entropy loss
- For each network, fit a two-component GMM to ℓ using the EM algorithm.
- For each sample, its clean probability w_i is the posterior probability $p(g \mid \ell_i)$
- Divide the training data into a labeled set and an unlabeled set by setting a threshold τ on w_i
- Feed the data to each other

Co-Divide

-Confidence Penalty for Asymmetric Noise

- The GMM cannot effectively distinguish clean and noisy samples based on the loss distribution
- To address this issue, we penalize confident predictions from the network by adding a **negative entropy term** (Pereyra et al., 2017)

$$\mathcal{H} = -\sum_{c} \mathrm{p_{model}^c} \; (x; heta) \mathrm{log} (\mathrm{p_{model}^c}(x; heta))$$



MIXMATCH

- Train the two networks one at a time while keeping the other one fixed.
- Perform label co-refinement for labeled samples

$$\overline{y}_b = w_b y_b + (1 - w_b) p_b$$

• Sharpening function on the refined label

$$\hat{y}_b = \text{Sharpen}(\bar{y}_b, T) = \bar{y}_b^{c \frac{1}{T}} / \sum_{c=1}^C \bar{y}_b^{c \frac{1}{T}}, \text{ for } c = 1, 2, ..., C.$$

• Use the ensemble of predictions from both networks to "co-guess" the labels for unlabeled samples

MIXMATCH

- LOSS $\mathcal{L}_{\mathcal{X}} = -\frac{1}{|\mathcal{X}'|} \sum_{x, p \in \mathcal{X}'} \sum_{c} p_{c} \log(\mathrm{p_{model}^{c}}(x; \theta)) \quad \mathcal{L}_{\mathcal{U}} = \frac{1}{|\mathcal{U}'|} \sum_{x, p \in \mathcal{U}'} \|p \mathrm{p_{model}}(x; \theta)\|_{2}^{2}$
- To prevent assigning all samples to a single class, we apply the regularization term

$$\mathcal{L}_{ ext{reg}} = \sum_{c} \pi_{c} \log \! \left(\pi_{c} / rac{1}{|\mathcal{X}'| + |\mathcal{U}'|} \sum_{x \in \mathcal{X}' + \mathcal{U}'} \mathrm{p}_{ ext{model}}^{ ext{c}} \left(x; heta)
ight)$$

• The total loss is

$$\mathcal{L} = \mathcal{L}_{\mathcal{X}} + \lambda_u \mathcal{L}_{\mathcal{U}} + \lambda_r \mathcal{L}_{ ext{reg}}$$

Algorithm 1: DivideMix. Line 4-8: co-divide; Line 17-18: label co-refinement; Line 20: label co-guessing. **1** Input: $\theta^{(1)}$ and $\theta^{(2)}$, training dataset $(\mathcal{X}, \mathcal{Y})$, clean probability threshold τ , number of augmentations M, sharpening temperature T, unsupervised loss weight λ_u , Beta distribution parameter α for MixMatch. 2 $\theta^{(1)}, \theta^{(2)} = \operatorname{WarmUp}(\mathcal{X}, \mathcal{Y}, \theta^{(1)}, \theta^{(2)})$ *// standard training (with confidence penalty)* 3 while e < MaxEpoch do $\mathcal{W}^{(2)} = \text{GMM}(\mathcal{X}, \mathcal{Y}, \theta^{(1)})$ // model per-sample loss with $\theta^{(1)}$ to obtain clean proabability for $\theta^{(2)}$ $\mathcal{W}^{(1)} = \mathrm{GMM}(\mathcal{X}, \mathcal{Y}, \theta^{(2)})$ // model per-sample loss with $\theta^{(2)}$ to obtain clean proabability for $\theta^{(1)}$ 5 for k = 1, 2 do *// train the two networks one by one* 6 $\mathcal{X}_e^{(k)} = \{ (x_i, y_i, w_i) | w_i \ge \tau, \forall (x_i, y_i, w_i) \in (\mathcal{X}, \mathcal{Y}, \mathcal{W}^{(k)}) \}$ // labeled training set for $\theta^{(k)}$ 7 $\mathcal{U}_e^{(k)} = \{ x_i | w_i < \tau, \forall (x_i, w_i) \in (\mathcal{X}, \mathcal{W}^{(k)}) \}$ // unlabeled training set for $\theta^{(k)}$ 8 for iter = 1 to num_iters do 9 From $\mathcal{X}_e^{(k)}$, draw a mini-batch $\{(x_b, y_b, w_b); b \in (1, ..., B)\}$ 10 From $\mathcal{U}_e^{(k)}$, draw a mini-batch $\{u_b; b \in (1, ..., B)\}$ 11 for b = 1 to B do 12 for m = 1 to M do 13 $\hat{x}_{b,m} = \operatorname{Augment}(x_b)$ // apply m^{th} round of augmentation to x_b 14 $\hat{u}_{b,m} = \operatorname{Augment}(u_b)$ // apply m^{th} round of augmentation to u_{b} 15 end 16 $p_b = \frac{1}{M} \sum_m p_{\text{model}}(\hat{x}_{b,m}; \theta^{(k)})$ // average the predictions across augmentations of $x_{\rm b}$ 17 $\bar{y}_b = w_b y_b + (1 - w_b) p_b$ 18 // refine ground-truth label guided by the clean probability produced by the other network $\hat{y}_b = \text{Sharpen}(\bar{y}_b, T)$ *// apply temperature sharpening to the refined label* 19 $\bar{q}_b = \frac{1}{2M} \sum_m \left(p_{\text{model}}(\hat{u}_{b,m}; \theta^{(1)}) + p_{\text{model}}(\hat{u}_{b,m}; \theta^{(2)}) \right)$ 20 // co-guessing: average the predictions from both networks across augmentations of $u_{\rm b}$ $q_b = \text{Sharpen}(\bar{q}_b, T)$ *// apply temperature sharpening to the guessed label* 21 end 22 $\hat{\mathcal{X}} = \{ (\hat{x}_{b,m}, \hat{y}_b); b \in (1, ..., B), m \in (1, ..., M) \}$ // augmented labeled mini-batch 23 $\hat{\mathcal{U}} = \{ (\hat{u}_{b,m}, q_b); b \in (1, ..., B), m \in (1, ..., M) \}$ *// augmented unlabeled mini-batch* 24 $\mathcal{L}_{\mathcal{X}}, \mathcal{L}_{\mathcal{U}} = \text{MixMatch}(\hat{\mathcal{X}}, \hat{\mathcal{U}})$ // apply MixMatch 25 $\mathcal{L} = \mathcal{L}_{\mathcal{X}} + \lambda_u \mathcal{L}_{\mathcal{U}} + \lambda_r \mathcal{L}_{\mathrm{reg}}$ // total loss 26 $\theta^{(k)} = \mathrm{SGD}(\mathcal{L}, \theta^{(k)})$ // update model parameters 27 end 28

end

29 | 30 end

CIFAR-10 & CIFAR-100

Dataset			CIFA	R-10	CIFAR-100					
Method/Noise ratio		20%	50%	80%	90%	20%	50%	80%	90%	
Cross-Entropy	Best	86.8	79.4	62.9	42.7	62.0	46.7	19.9	10.1	
	Last	82.7	57.9	26.1	16.8	61.8	37.3	8.8	3.5	
Bootstrap	Best	86.8	79.8	63.3	42.9	62.1	46.6	19.9	10.2	
(Reed et al., 2015)	Last	82.9	58.4	26.8	17.0	62.0	37.9	8.9	3.8	
F-correction	Best	86.8	79.8	63.3	42.9	61.5	46.6	19.9	10.2	
(Patrini et al., 2017)	Last	83.1	59.4	26.2	18.8	61.4	37.3	9.0	3.4	
Co-teaching+*	Best	89.5	85.7	67.4	47.9	65.6	51.8	27.9	13.7	
(Yu et al., 2019)	Last	88.2	84.1	45.5	30.1	64.1	45.3	15.5	8.8	
Mixup	Best	95.6	87.1	71.6	52.2	67.8	57.3	30.8	14.6	
(Zhang et al., 2018)	Last	92.3	77.6	46.7	43.9	66.0	46.6	17.6	8.1	
P-correction*	Best	92.4	89.1	77.5	58.9	69.4	57.5	31.1	15.3	
(Yi & Wu, 2019)	Last	92.0	88.7	76.5	58.2	68.1	56.4	20.7	8.8	
Meta-Learning*	Best	92.9	89.3	77.4	58.7	68.5	59.2	42.4	19.5	
(Li et al., 2019)	Last	92.0	88.8	76.1	58.3	67.7	58.0	40.1	14.3	
M-correction	Best	94.0	92.0	86.8	69.1	73.9	66.1	48.2	24.3	
(Arazo et al., 2019)	Last	93.8	91.9	86.6	68.7	73.4	65.4	47.6	20.5	
DivideMix	Best	96.1	94.6	93.2	76.0	77.3	74.6	60.2	31.5	
	Last	95.7	94.4	92.9	75.4	76.9	74.2	59.6	31.0	

Method	Best	Last
Cross-Entropy	85.0	72.3
F-correction (Patrini et al., 2017)	87.2	83.1
M-correction (Arazo et al., 2019)	87.4	86.3
Iterative-CV (Chen et al., 2019)	88.6	88.0
P-correction (Yi & Wu, 2019)	88.5	88.1
Joint-Optim (Tanaka et al., 2018)	88.9	88.4
Meta-Learning (Li et al., 2019)	89.2	88.6
DivideMix	93.4	92.1

Table 2: Comparison with state-of-the-art methods in test accuracy (%) on CIFAR-10 with 40% **asymmetric noise**.

Table 1: Comparison with state-of-the-art methods in test accuracy (%) on CIFAR-10 and CIFAR-100 with symmetric noise. Methods marked by * denote re-implementations based on public code.

Clothing1M & WebVision

Method	Weby	Vision	ILSVRC12		
	top1	top5	ILSV top1 57.36 58.26 57.80 57.80 61.48 61.60 75.20	top5	
F-correction (Patrini et al., 2017)	61.12	82.68	57.36	82.36	
Decoupling (Malach & Shalev-Shwartz, 2017)	62.54	84.74	58.26	82.26	
D2L (Ma et al., 2018)	62.68	84.00	57.80	81.36	
MentorNet (Jiang et al., 2018)	63.00	81.40	57.80	79.92	
Co-teaching (Han et al., 2018)	63.58	85.20	61.48	84.70	
Iterative-CV (Chen et al., 2019)	65.24	85.34	61.60	84.98	
DivideMix	77.32	91.64	75.20	90.84	

Table 3:Comparison with state-of-the-art methods in test accuracy (%) on Clothing1M. Results for baselines are copied from original papers.

Method	Test Accuracy
Cross-Entropy	69.21
F-correction (Patrini et al., 2017)	69.84
M-correction (Arazo et al., 2019)	71.00
Joint-Optim (Tanaka et al., 2018)	72.16
Meta-Cleaner (Zhang et al., 2019)	72.50
Meta-Learning (Li et al., 2019)	73.47
P-correction (Yi & Wu, 2019)	73.49
DivideMix	74.76

Table 4: Comparison with state-of-the-art methods trained on (mini) WebVision dataset. Numbers denote top-1 (top-5) accuracy (%) on the WebVision validation set and the ImageNet ILSVRC12 validation set. Results for baseline methods are copied from Chen et al. (2019).

ABLATION STUDY

Dataset		CIFAR-10						CIFAR-100			
Noise type		Sym.			Asym.		Sym.				
Methods/Noise ratio		20%	50%	80%	90%	40%	20%	50%	80%	90%	
DivideMix	Best	96.1	94.6	93.2	76.0	93.4	77.3	74.6	60.2	31.5	
	Last	95.7	94.4	92.9	75.4	92.1	76.9	74.2	59.6	31.0	
DivideMix with $\theta^{(1)}$ test	Best	95.2	94.2	93.0	75.5	92.7	75.2	72.8	58.3	29.9	
	Last	95.0	93.7	92.4	74.2	91.4	74.8	72.1	57.6	29.2	
DivideMix w/o co-training	Best	95.0	94.0	92.6	74.3	91.9	74.8	72.3	56.7	27.7	
	Last	94.8	93.3	92.2	73.2	90.6	74.1	71.7	56.3	27.2	
DivideMix w/o label refinement	Best	96.0	94.6	93.0	73.7	87.7	76.9	74.2	58.7	26.9	
	Last	95.5	94.2	92.7	73.0	86.3	76.4	73.9	58.2	26.3	
DivideMix w/o augmentation	Best	95.3	94.1	92.2	73.9	89.5	76.5	73.1	58.2	26.9	
	Last	94.9	93.5	91.8	73.0	88.4	76.2	72.6	58.0	26.4	
Divide and MixMatch	Best	94.1	92.8	89.7	70.1	86.5	73.7	70.5	55.3	25.0	
	Last	93.5	92.3	89.1	68.6	85.2	72.4	69.7	53.9	23.7	

Table 5: Ablation study results in terms of test accuracy (%) on CIFAR-10 and CIFAR-100.