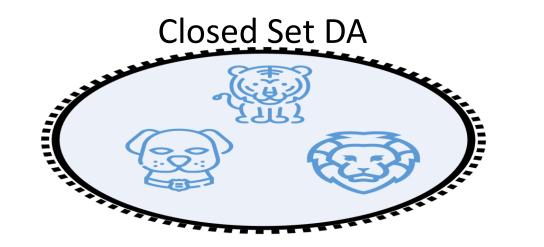
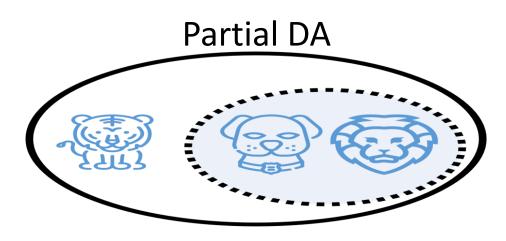
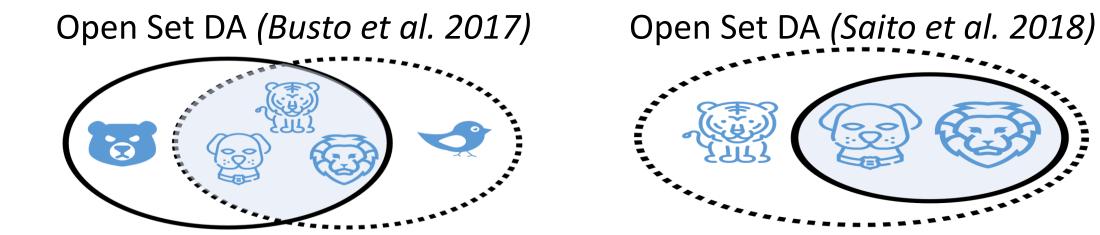


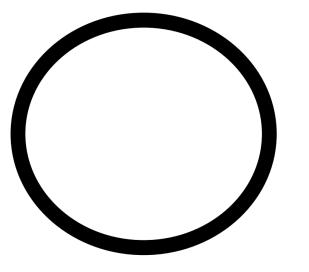
Universal Domain Adaptation


Kaichao You¹, Mingsheng Long¹(⊠), Zhangjie Cao¹, Jianmin Wang¹, and Michael I. Jordan²
 ¹KLiss, MOE; BNRist; School of Software, Tsinghua University, China
 ¹Research Center for Big Data, Tsinghua University, China
 ¹Beijing Key Laboratory for Industrial Big Data System and Application
 ²University of California, Berkeley, USA


youkaichao@gmail.com, {mingsheng,jimwang}@tsinghua.edu.cn, jordan@cs.berkeley.edu


CVPR2019

Domain Adaptation



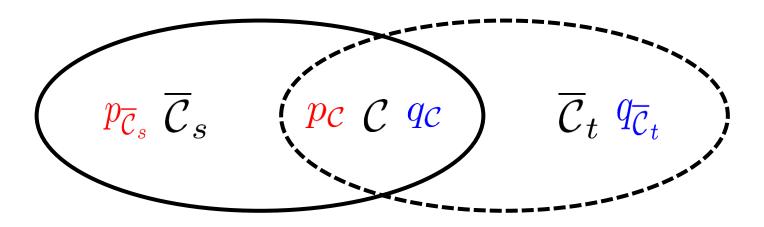
These settings rely on the rich prior knowledge about the relationship between the label sets of source and target domains

Universal Domain Adaptation (UDA)

- Motivation: the relationship of label sets between the source and target domains is unknown in the presence of a large domain gap.
- Learning Goal: classify target samples correctly if it belongs any class in source label set, or mark it as "known" otherwise.

Source Domain Label Set

Target Domain Label Set


This setting imposes no prior knowledge on the label sets of source and target domains

Problem Setting

- \succ Source data: $\mathcal{D}_s = \{(\mathbf{x}_i^s, \mathbf{y}_i^s)\}_{i=1}^{n_s}$
- \succ Source label set: C_s
- \succ Source distribution: p
- \succ Source private label set: \mathcal{C}_s

- \blacktriangleright Target data: $\mathcal{D}_t = \{\mathbf{x}_i^t\}_{i=1}^{n_t}$
- \succ Target label set: C_t
- \succ Target distribution: q
- \succ Target private label set: $\overline{\mathcal{C}}_t$

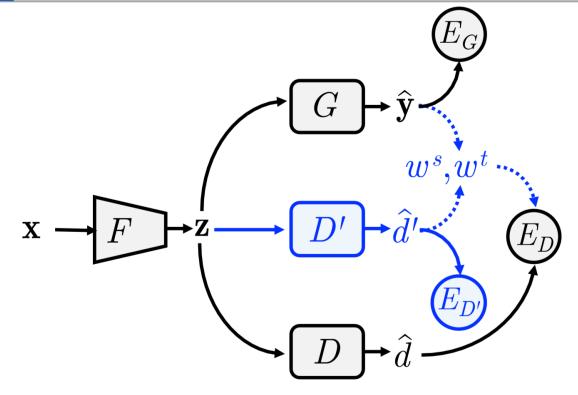
Align distributions of source and target data in the common label set

Challenges of UDA

\succ Category gap: C, \overline{C}_s and \overline{C}_t are unknown

• Automatically identify the source and target data from C, such that feature alignment can be done in the auto-discovered common label set.

 \blacktriangleright Domain gap: $p \neq q$ and $p_{\mathcal{C}} \neq q_{\mathcal{C}}$


- Domain adaptation should be applied to align distributions of source and target data in common label set ${\cal C}$.

Detect unknown class: confidence thresholding

• The predictions by neural networks are usually overconfident but less discriminative due to the underlying domain gap.

Universal Adaptation Network (UAN)

- G : Label classifier
- F: Feature extractor
- D: Adversarial domain discriminator
- D': Non-adversarial domain discriminator

- $E_G = \mathbb{E}_{(\mathbf{x}, \mathbf{y}) \sim p} L\left(\mathbf{y}, G(F(\mathbf{x}))\right)$
- $E_{D'} = -\mathbb{E}_{\mathbf{x} \sim p} \log D'(F(\mathbf{x}))$ $-\mathbb{E}_{\mathbf{x} \sim q} \log (1 - D'(F(\mathbf{x})))$ $E_{D} = -\mathbb{E}_{\mathbf{x} \sim p} w^{s}(\mathbf{x}) \log D(F(\mathbf{x}))$ $-\mathbb{E}_{\mathbf{x} \sim q} w^{t}(\mathbf{x}) \log (1 - D(F(\mathbf{x})))$
 - The training of UAN can be written as a minmax game:

$$\max_{D} \min_{F,G} E_G - \lambda E_D$$

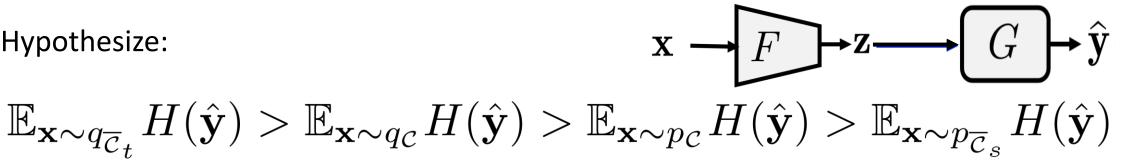
Domain Similarity

- $\succ \text{Hypothesize:} \qquad \mathbf{x} \longrightarrow \mathbf{z} \longrightarrow \mathbf{D}' \longrightarrow \mathbf{C}$ $\mathbb{E}_{\mathbf{x} \sim p_{\overline{C}_s}} \hat{d}' > \mathbb{E}_{\mathbf{x} \sim p_c} \hat{d}' > \mathbb{E}_{\mathbf{x} \sim q_c} \hat{d}' > \mathbb{E}_{\mathbf{x} \sim q_{\overline{C}_t}} \hat{d}'$
- Reasonability:
 - For source data d' = 1, and for target data d' = 0, so:

$$\mathbb{E}_{\mathbf{x}\sim p_{\overline{\mathcal{C}}_s}}\hat{d}', \mathbb{E}_{\mathbf{x}\sim p_{\mathcal{C}}}\hat{d}' > \mathbb{E}_{\mathbf{x}\sim q_{\mathcal{C}}}\hat{d}', \mathbb{E}_{\mathbf{x}\sim q_{\overline{\mathcal{C}}_t}}\hat{d}'$$

- $p_{\mathcal{C}}$ is closer to $q_{\mathcal{C}}$ compared with $p_{\overline{\mathcal{C}}_s}$, so:

$$\mathbb{E}_{\mathbf{x}\sim p_{\overline{\mathcal{C}}_s}}\hat{d}' > \mathbb{E}_{\mathbf{x}\sim p_{\mathcal{C}}}\hat{d}'$$


• Similarly:

 $\mathbb{E}_{\mathbf{x} \sim q_{\mathcal{C}}} \hat{d}' > \mathbb{E}_{\mathbf{x} \sim q_{\overline{\mathcal{C}}}} \hat{d}'$

Prediction Uncertainty

> Hypothesize:

- \blacktriangleright Reasonability:
 - Predictions are certain for source data and uncertain for target data. •

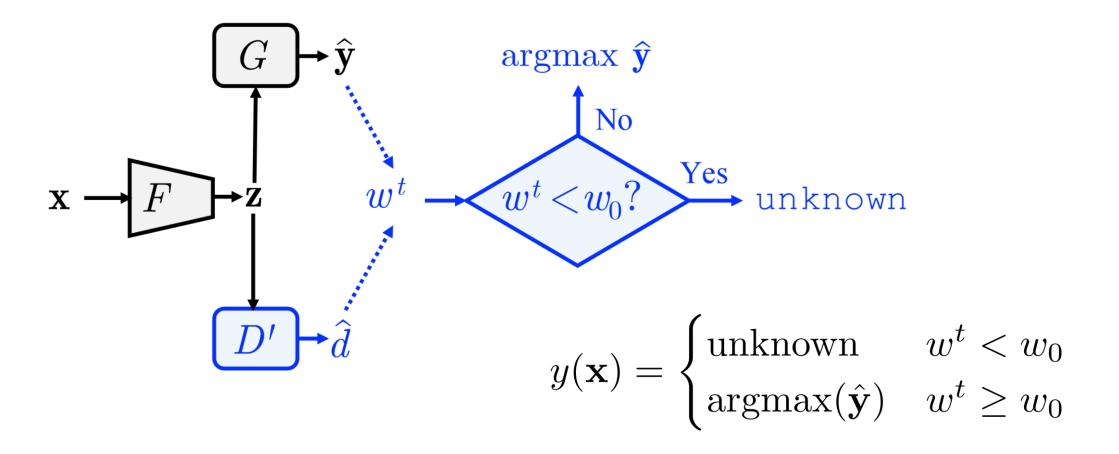
$$\mathbb{E}_{\mathbf{x} \sim q_{\overline{\mathcal{C}}_t}} H(\hat{\mathbf{y}}), \mathbb{E}_{\mathbf{x} \sim q_{\mathcal{C}}} H(\hat{\mathbf{y}}) > \mathbb{E}_{\mathbf{x} \sim p_{\mathcal{C}}} H(\hat{\mathbf{y}}), \mathbb{E}_{\mathbf{x} \sim p_{\overline{\mathcal{C}}_s}} H(\hat{\mathbf{y}})$$

• Similar samples from $p_{\mathcal{C}}$ and $q_{\mathcal{C}}$ can attract each other.

$$\mathbb{E}_{\mathbf{x} \sim q_{\overline{C}_{t}}} H(\hat{\mathbf{y}}) > \mathbb{E}_{\mathbf{x} \sim q_{\mathcal{C}}} H(\hat{\mathbf{y}})$$
$$\mathbb{E}_{\mathbf{x} \sim p_{\mathcal{C}}} H(\hat{\mathbf{y}}) > \mathbb{E}_{\mathbf{x} \sim p_{\overline{C}_{s}}} H(\hat{\mathbf{y}})$$

Transferability Criterion

$$E_D = -\mathbb{E}_{\mathbf{x}\sim p} w^s(\mathbf{x}) \log D(F(\mathbf{x})) - \mathbb{E}_{\mathbf{x}\sim q} w^t(\mathbf{x}) \log \left(1 - D(F(\mathbf{x}))\right)$$


> A well-established sample-level transferability criterion should satisfy:

$$\mathbb{E}_{\mathbf{x} \sim p_{\mathcal{C}}} w^{s}(\mathbf{x}) > \mathbb{E}_{\mathbf{x} \sim p_{\overline{\mathcal{C}}_{s}}} w^{s}(\mathbf{x})$$
$$\mathbb{E}_{\mathbf{x} \sim q_{\mathcal{C}}} w^{t}(\mathbf{x}) > \mathbb{E}_{\mathbf{x} \sim q_{\overline{\mathcal{C}}_{t}}} w^{t}(\mathbf{x})$$

> Integrates both the **domain similarity** and the **prediction uncertainty** of each sample.

$$w^{s}(\mathbf{x}) = \frac{H(\hat{\mathbf{y}})}{\log |\mathcal{C}_{s}|} - \hat{d}'(\mathbf{x})$$
$$w^{t}(\mathbf{x}) = \hat{d}'(\mathbf{x}) - \frac{H(\hat{\mathbf{y}})}{\log |\mathcal{C}_{s}|}$$

Either rejects the target sample X as "unknown" class or classifiers it to one of the source classes.

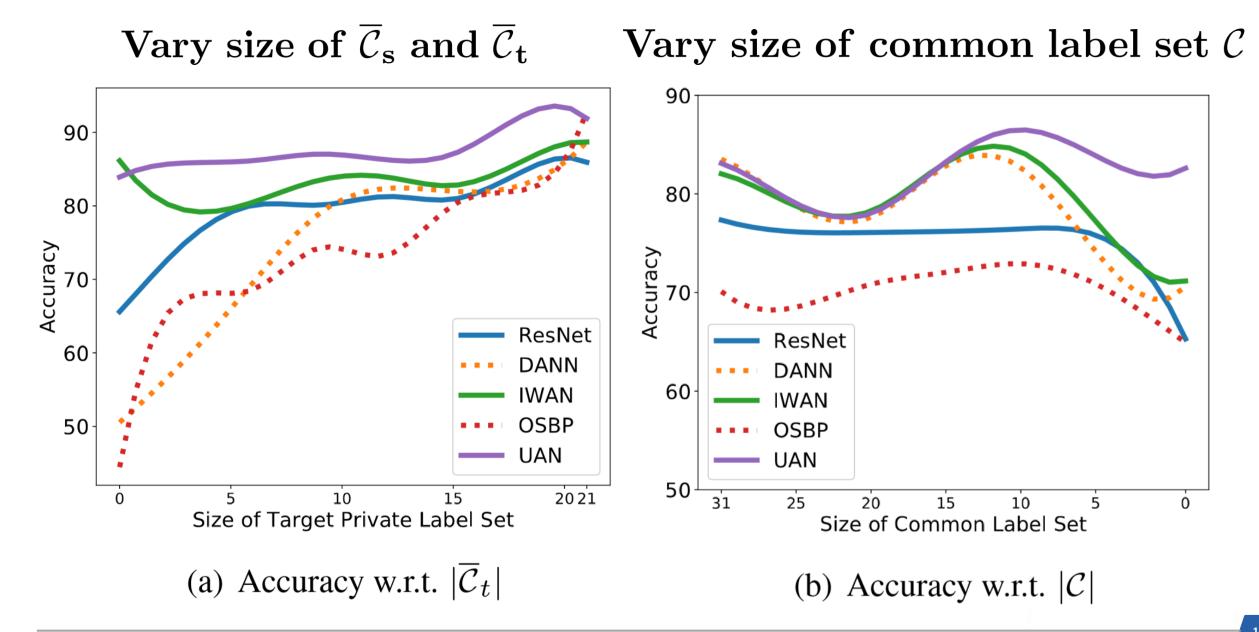
Experiment Setup

- Compared Methods:
 - Convolution neural networks: ResNet
 - Close-set domain adaptation methods: DaNN, RTN
 - Partial domain adaptation methods: IWAN, PADA
 - Open-set domain adaptation methods: ATI, OSBP
- Two variants of UAN
 - UAN w/o d : Only use domain similarity as weight
 - UAN w/o y: Only use prediction uncertainty as weight
- \succ Evaluation Protocols: the average of per-class accuracy for all the $|C|_s + 1$ classes.

Experiment Result1

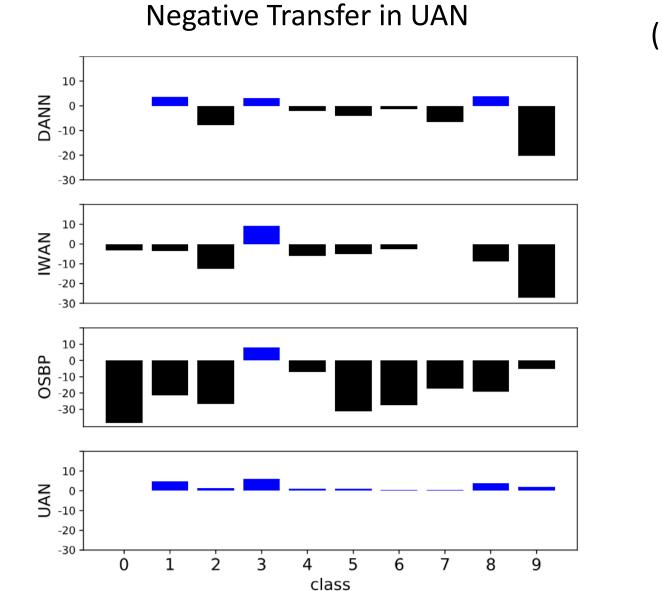
$\succ \mathcal{C}$: the first 10 classes		$ \mathcal{C} \cap \mathcal{C} $
$\succ \overline{\mathcal{C}}_s$: the next 5 classes	Commonness	$\xi = \frac{ \mathcal{C}_{\mathbf{s}} + \mathcal{C}_{\mathbf{t}} }{ \mathcal{C}_{\mathbf{s}} \cup \mathcal{C}_{\mathbf{t}} }$
$\succ \overline{\mathcal{C}}_t$: the rest 50 classes		

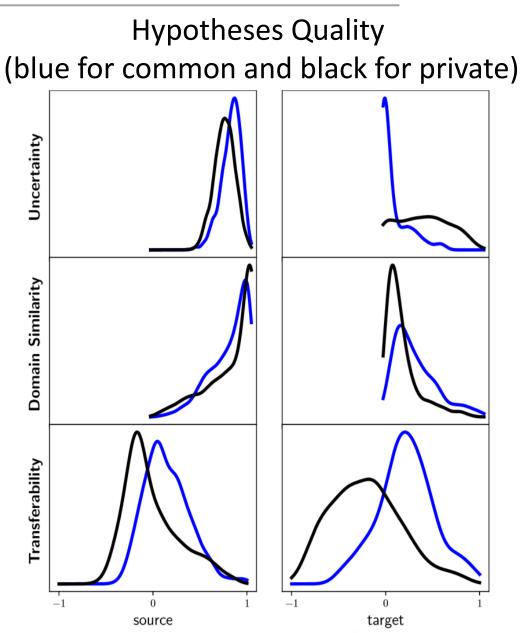
Table 1. Average class accuracy (%) of universal domain adaptation tasks on Office-Home ($\xi = 0.15$) dataset (ResNet)													
Method	Office-Home												
	$Ar \rightarrow Cl$	$Ar \to Pr$	$Ar \rightarrow Rw$	$\mathrm{Cl} ightarrow \mathrm{Ar}$	$\mathrm{Cl} ightarrow \mathrm{Pr}$	$\text{Cl} \rightarrow \text{Rw}$	$\Pr \rightarrow Ar$	$\text{Pr} \rightarrow \text{Cl}$	$\text{Pr} \rightarrow \text{Rw}$	$Rw \to Ar$	$Rw \to Cl$	$Rw \to Pr$	Avg
ResNet [13]	59.37	76.58	87.48	69.86	71.11	81.66	73.72	56.30	86.07	78.68	59.22	78.59	73.22
OSBP [35]	47.75	60.90	76.78	59.23	61.58	74.33	61.67	44.50	79.31	70.59	54.95	75.18	63.90
UAN w/o d	61.60	81.86	87.67	74.52	73.59	84.88	73.65	57.37	86.61	81.58	62.15	79.14	75.39
UAN w/o y	56.63	77.51	87.61	71.96	69.08	83.18	71.40	56.10	84.24	79.27	60.59		72.91
UAN	63.00	82.83	87.85	76.88	78.70	85.36	78.22	58.59	86.80	83.37	63.17	79.43	77.02



	0		(3	//	0	(3			(3)	/
Method		ImageNe	ImageNet-Caltech							
	$\mathbf{A} \to \mathbf{W}$	$\mathrm{D} \to \mathrm{W}$	$W \to D$	$\mathbf{A} \to \mathbf{D}$	$\mathrm{D}\to\mathrm{A}$	$W \to A$	Avg	$I \rightarrow C$	$\mathrm{C} ightarrow \mathrm{I}$	VisDA
ResNet [13]	75.94	89.60	90.91	80.45	78.83	81.42	82.86	70.28	65.14	52.80
DANN [6]	80.65	80.94	88.07	82.67	74.82	83.54	81.78	71.37	66.54	52.94
RTN [23]	85.70	87.80	88.91	82.69	74.64	83.26	84.18	71.94	66.15	53.92
IWAN [45]	85.25	90.09	90.00	84.27	84.22	86.25	86.68	72.19	66.48	58.72
PADA [45]	85.37	79.26	90.91	81.68	55.32	82.61	79.19	65.47	58.73	44.98
ATI [28]	79.38	92.60	90.08	84.40	78.85	81.57	84.48	71.59	67.36	54.81
OSBP [35]	66.13	73.57	85.62	72.92	47.35	60.48	67.68	62.08	55.48	30.26
UAN	85.62	94.77	97.99	86.50	85.45	85.12	89.24	75.28	70.17	60.83
	·	<u> </u>	<u> </u>	· · · · · · · · · · · · · · · · · · ·	<u>`</u>	<u> </u>			<u> </u>	· · · · · · · · · · · · · · · · · · ·

Table 2. Average class accuracy (%) on Office-31 ($\xi = 0.32$), ImageNet-Caltech ($\xi = 0.07$) and VisDA2017 ($\xi = 0.50$) (ResNet)




Experiment Result3

Experiment Result4

THANKS