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IEmpirical Risk Minimization (ERM) Framework

In machine learning, our goal is to find a predictor minimize the
expected loss of f given below:

L(f()=Exyl(f(X).Y) — L(f()=ExyI(f(X).Y)

| :
The expectation with respective to ') Risk
the true underlying distribution D]

Binary classification: y € {%1}

1, it f(x)y <O,
O-lloss I(f(x),y)=11, if f(x)=0and y=—1
0, otherwise.



IEmpiricaI Risk Minimization (ERM) Framework

Given a set of training data (X;,Y;), ..., (X, ¥,) independently drawn from
D, the minimization of the empirical risk given below can be regarded as
stochastic approximation of risk:

1 n
;Zl( f(X;),Y:) Nonconvexity s NP-hard
1=1

Idea: minimize a convex upper bound of the O-1 loss function T

Least squares: ¢ (v) = (1 — v)?.
Modified least squares: ¢ (v) = max(l — v, 0)2.
SVM: ¢ (v) = max(l — v, 0).

Exponential: ¢ (v) = exp(—v).

Logistic regression: ¢ (v) = In(1 4 exp(—v)).

n

|
" Y o (f(XDY)

1=1



IEmpiricaI Risk Minimization (ERM) Framework

Risk Bound

R A penalty term that is large for
L) = LOO) Hel  pore complex function class

Example

Theorem 1 Let F' be a class of {£1}-valued functions defined on a set X. Let P be a
probability distribution on X x {£1}, and suppose that (X1,Y1),...,(Xn,Yn) and (X,Y)
are chosen independently according to P. Then, there is an absolute constant ¢ such that
for any integer n, with probability at least 1 — 0 over samples of length n, every f in F

satisfies

n

P(Y # f(X)) < Po(Y # f(X)) +£\/ VCdim(F )J: data-independent

where VCdim(F') denotes the Vapnik-Chervonenkis dimension of F,

) 1 T
Pn,(S) — E Z 1S(XiaY;l)a
=1



I Rademacher Complexity

Definition 3.1 (Empirical Rademacher complexity) Let G be a family of functions map-
ping from Z to |a,b] and S = (z1,...,2zm) a fived sample of size m with elements
in Z. Then, the empirical Rademacher complexity of § with respect to the sample

S is defined as:
~ ] —
Rs(G) =E |:SL1p — E O'?;g(z,,;):| , (3.1)

7 loes i

where 0 = (07)ieim), called Rademacher variables are independent uniform random variables taking
values in {—1,+1}; Vi e [m|,P(o; = —-1) = P(o; = +1) = 1/2.

Definition 3.2 (Rademacher complexity) Let D denote the distribution according to
which samples are drawn. For any integer m > 1, the Rademacher complexity

of G is the expectation of the empirical Rademacher complexity over all samples of
size m drawn according to D:

Rn(G) = (B [Rs(9)). (32)



I Generalization Bound

Theorem 3.3 Let G be a family of functions mapping from Z to [0,1]. Then, for any
0 > 0, with probability at least 1 — 0 over the draw of an i.i.d. sample S of size m,

each of the following holds for all g € G:
fihe ] ? f ! data-dependent

1 « log
Elg(2)] < — (2;) H 2%, (5) |+ ) (3.3)
9(2) = ¢(f(2),y) g m ;g [ ] \' 2m

and  Elg(z)] < — g(z@)%—[Qﬁ%g(S)]—I—S 10?5. (3.4)

Proof sketch. IES 9] = % Z?il 9(2;)

A~

¢(S) = sup | Elg] — Eg[g]) McDiarmid’s inequality

geyg

VR

Foundations of Machine Learning. C3



I Learning with Noisy Label

Symmetric label noise

Y =

~ Y with probability p
-Y with probability (1 — p)

Class-conditional label noise (CCN)
PY=-1Y =4+1)=p1,P(Y =+1]Y = =1) = p_1, and p,1 + p_1 < 1 (known)

Positive-Unlabeled (PU) Learning PV = 1Y = +1) = p

S = S+1 U Sunl > § — S+1 U 8—1 P(?: +1lY =-1)= 0

— T

Si1 = {(xe, )}y Sum = {Xi}ip 4 S—1 = {(xi, = 1) H i1




I Learning with Noisy Label

Problem setup

Risk: Bp(f) = Ex,yv)~n [Hsign(r(x)#v}]

Bayes optimal function: f*(z) = sign(n(z) — 1/2) where n(z) = P(Y = 1|x)
Bayes risk: R* = Rp(f*)

Loss function: £(t,y)

Modified loss function: /(t, g) for noisy label

1. Empirical (-risk on the observed sample: R;(f) := LS U(f(X0), Ya).

2. Asn grows, we expect ﬁg(f ) to be close to the (-risk under the noisy distribution D ,:
Ry p,(f) = Ex yyup, |HF(X),T)] -

3. (-risk under the “clean” distribution D: R, p(f) := E/x yvy~p [L(f(X),Y)].



I Learning with Noisy Label

. . - 1 - —1 ﬁ t‘, - 1 E t., —1
Unbiased Estimator: ((t,y) := d-p I) (p‘y) [f)"’ ) = [E; [ (t, U)] = ((t,y)
— P+1 — P-1

Proof. ideri - -
C(inSIder‘mg TP}GT Y +1 and Y 1 E(f +1) - (1 - [)—l)ﬁ(ta _I_l) o /’L}—lﬁ(tj _1)
(1 o p—l-l){/(f +1) + ,()4_-1{0,'(1:, _1) — p(f* +1) | 1 — P+1 — P—
. . m—)
(1— p_)l(t, —1) + p_1£(t,+1) = €(t, —1) it —1) — (1 —pyr)l(t, —1) — p— M( +1)
| 1 —pi1—pa
Our goal is to learn a good predictor in the presence of label noise
by minimizing f « argmin ﬁ;(}‘)
feF |

Unbiasedness of # —— the above term converge to R/ p(f)

Use Rademacher complexity to give a performance guarantee for this procedure



I Learning with Noisy Label

Lemma 2. Let ((t,y) be L-Lipschitz in t (for every y). Then, with probability at least 1 — 9,

log(1/9)
2n

1}1651:%( |R (f) — RE,DP(f” < 2L,R(F) JF\/

where ER(I) L= EX,;,,E, ["’upfe}" ‘C’af( )]

Proof. . log(1/§
max |. R p ()| <2-R(loF)+ \/ Ogén/ )

JeF

o~

- ] e -
where RUloF)=Ey ¢ lsup - E el (f(X5),Y:)
T T3 IE‘F .TL r{,:l

Theorem 3.3 Let G be a family of nctions mappmgo{;’om Z to [0,1]. Then, for any
o > OAég’z'%%bﬁb% a!-t'@§§%h' mgrntffe 'é“ %SFN %a,mple S of size m,
each of the following holds for all g € G:

: < L, -R(F), log L
E[g(z)] < —Lgtzz) ) ° (3.3)
=1




I Learning with Noisy Label

Theorem 3 (Main Result 1). With probability at least 1 — 0,

¢ log(1/6
Rep(f) gg}gm,g(f>+4m<.r>+2\/ £(1/9)

Let f* be the minimizer of Ry p(:) < *’”’f-”;?__ill R(f)
Rf,f)(f) — R p(f7)

- RE,DP(JE) - Rf,f)p(f*)

Proof.

Due to unbiasedness of ¢

< 0+ 2max |B( ) - Ré,f)r,(f” (Rf D, (f) ﬁﬁ(f))

feF

log(1/6)
: _ er
s \RAT) i, (1) < 2L,90F) 250




I CCN in Multi-Label Learning

ERM Framework

Ny, flx; 2)) = Zj-':l ((y’, fi(x; Z)) where Z ={Z € R*%:rank(Z) < &}
Class-Conditional random label Noise

Uniform P(y/ = -1|y/ =+1)=p,y PO/ =+1|y/ =-1)=p_, V€ ld]

Non-uniform P(y/ = -1|y/ =+1)=pl, P(y/ =+1ly/ =-1)=pl, vjelq]
Partial Multi-Label Learning:

P(yj = —1|yj = +1) =0 P(yj = +1|yj = —1) = p_1
Weak Label Learning

P(yj = —1|yj = +1) = P11 P(yf = +1|yj = —1) =0



Thanks
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