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Empirical Risk Minimization (ERM) Framework

In machine learning, our goal is to find a predictor minimize the 
expected loss of 𝑓𝑓 given below:

The expectation with respective to 
the true underlying distribution 𝐷𝐷

Binary classification:

0-1 loss

? Risk



Empirical Risk Minimization (ERM) Framework
Given a set of training data 𝑋𝑋1,𝑌𝑌1 , … , 𝑋𝑋𝑛𝑛,𝑌𝑌𝑛𝑛 independently drawn from 
𝐷𝐷, the minimization of the empirical risk given below can be regarded as 
stochastic approximation of risk:

Nonconvexity

Idea: minimize a convex upper bound of the 0-1 loss function I 

NP-hard



Empirical Risk Minimization (ERM) Framework

Risk Bound

𝐿𝐿 𝑓𝑓(�) ≤ �𝐿𝐿(𝑓𝑓(�)) + 𝜖𝜖 A penalty term that is large for 
more complex function class

Example

data-independent



Rademacher Complexity



Generalization Bound

data-dependent

Proof sketch.

McDiarmid’s inequality

Foundations of Machine Learning. C3

𝑔𝑔 𝑧𝑧 = ℓ(𝑓𝑓 𝑧𝑧 , 𝑦𝑦)



Learning with Noisy Label

Symmetric label noise

Class-conditional label noise (CCN)

�𝑌𝑌 = � 𝑌𝑌−𝑌𝑌
𝑤𝑤𝑤𝑤𝑤𝑤𝑤 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝜌𝜌
𝑤𝑤𝑤𝑤𝑤𝑤𝑤 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 (1 − 𝜌𝜌)

Positive-Unlabeled (PU) Learning

0

𝜌𝜌

(known)



Learning with Noisy Label
Problem setup

Risk:

Loss function:
Modified loss function:

Bayes optimal function: where 
Bayes risk:

for noisy label



Learning with Noisy Label

Unbiased Estimator:

Proof. Considering that y = +1 and y = -1 

Our goal is to learn a good predictor in the presence of label noise 
by  minimizing  

Unbiasedness of �ℓ the above term converge to 

Use Rademacher complexity to give a performance guarantee for this procedure



Learning with Noisy Label

Proof.

where

where

Assume ℓ is L-Lipschitz then �ℓ is 𝐿𝐿𝜌𝜌-Lipschitz



Learning with Noisy Label

Proof.
Let 𝑓𝑓∗ be the minimizer of 

Due to unbiasedness of �ℓ



CCN in Multi-Label Learning

ERM Framework

𝒵𝒵 = 𝑍𝑍 ∈ ℝ𝑑𝑑×𝑞𝑞: 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(𝑍𝑍) ≤ 𝜀𝜀where

Class-Conditional random label Noise

𝑃𝑃 𝑦𝑦𝑗𝑗 = −1 𝑦𝑦𝑗𝑗 = +1 = 𝜌𝜌+1Uniform 𝑃𝑃 𝑦𝑦𝑗𝑗 = +1 𝑦𝑦𝑗𝑗 = −1 = 𝜌𝜌−1

Non-uniform

∀𝑗𝑗 ∈ 𝑞𝑞

𝑃𝑃 𝑦𝑦𝑗𝑗 = −1 𝑦𝑦𝑗𝑗 = +1 = 𝜌𝜌+1
𝑗𝑗 𝑃𝑃 𝑦𝑦𝑗𝑗 = +1 𝑦𝑦𝑗𝑗 = −1 = 𝜌𝜌−1

𝑗𝑗 ∀𝑗𝑗 ∈ 𝑞𝑞
Partial Multi-Label Learning:

Weak Label Learning

𝑃𝑃 𝑦𝑦𝑗𝑗 = −1 𝑦𝑦𝑗𝑗 = +1 = 𝜌𝜌+1 𝑃𝑃 𝑦𝑦𝑗𝑗 = +1 𝑦𝑦𝑗𝑗 = −1 = 0

𝑃𝑃 𝑦𝑦𝑗𝑗 = −1 𝑦𝑦𝑗𝑗 = +1 = 0 𝑃𝑃 𝑦𝑦𝑗𝑗 = +1 𝑦𝑦𝑗𝑗 = −1 = 𝜌𝜌−1



Thanks


	幻灯片编号 1
	幻灯片编号 2
	幻灯片编号 3
	幻灯片编号 4
	幻灯片编号 5
	幻灯片编号 6
	幻灯片编号 7
	幻灯片编号 8
	幻灯片编号 9
	幻灯片编号 10
	幻灯片编号 11
	幻灯片编号 12
	幻灯片编号 13
	幻灯片编号 14
	幻灯片编号 15

