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How to Learn with sprase delayed reward ?
(1)

take “play” :
r1=1) Mep=e=lug9=0, y100=-100;

take “learn” :

p—
L ry1="1, M= =r199=0, F1100=100;

Room 2 Room 1

(2) :

action = {North,South, East, West}

r=+10 reaching the key

r = +100 moves to the car while carrying the key
r=-2 bumping to the wall

= no reward or punishment for exploring the space

Room 3 Room 4




' Hierarchical Reinforcement Learning e8| QP

Main Idea :

Rely on an upper-level policy to decompose the entire task, and then use the
lower-level policy to gradually execute.,

Problems :

Subprolem1 : Learning a meta-policy to choose a subgoal

Subprolem?2 : Exploring the state space while learning subtask through intrinsic
motivation

Subprolem3 : Subgoal discovery
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' Intrinsic motivation learnlng IV

Assuming that there is an oracle to give almost good subgoals, at least
two benifits can get:

(1) exploration of large scale state spaces

(2) enabling the reuse of skills in varied environments
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e Key Task, Hard Placement. In this simplified version of the task, the agent was
trained to move to the key, producing a policy, 7,,, for reaching a randomly located
goal g (key). This is illustrated in Figure 7(a). For each starting s € S, a random
goal, g, was assigned and the cumulative reward was obtained. We report the average
reward scores and the average success percentage in Figure 8 (a) and (b), respectively.

e Key Task, Easy Placement. This version of the task is the same as the last, except
that the goal, g, was always randomly placed in a location adjacent to the starting
state, s. (See Figure 7 (a).) We report the average reward scores and the average
success percentage in Figure 8 (¢) and (d), respectively.

e Key-Car Task, Hard Placement. In this version of the task, both the key, giey,
and the car, g..., were randomly placed. The agent received positive reward when the
agent moved to the key (+10) and subsequently moved to the car (+100). (See Figure
7 (b).) We report the average scores and the average success percentage in Figure 9
(a) and (b), respectively.

e Key-Car Task, Easy Placement. This version of the task is the same as the last,
except that the key was always located at (0,0), and the car was always located at
5 HliH(Tf 41, — ]_) ]f St+1 iS not t{}j[‘ﬂ]ij[]al (1,1). We report the average reward scores and the average success percentage in
g1 = . . Figure 9 (c) and (d), respectively.
+1 if s;,, achieves the goal, g,
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' Reusing Learned Skills
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' Subgoal discovery il

Good Subgoal Assumtions

(1) attending to the states associated with anomalous transition experiences.
( large rewards. large changes in state features)

(2) clustering experiences based on a similarity measure and collecting the
set of associated states into a potential subgoal.

Methods:

merges anomaly (outlier) detection with the K-means clustering of experiences.
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' Subgoal discovery Algorithm b ot

Algorithm 4 Unsupervised Subgoal Discovery Algorithm

for each e = (s,a,r,s") stored in D do
if experience e is an outlier (anomaly) then
Store s’ to the subgoals set G
Remove e from D
end if
end for
Fit a K-means Clustering Algorithm on D using previous centroids as initial points
Store the updated centroids to the subgoals set G




' Algorithm Sl

Algorithm 5 Unified Model-Free HRL Algorithm Algorithm 2 Intrinsic Motivation Learning
Pretrain controller using Algorithm 2 on a set of random subgoals G’ Specity Subgoals space G
Initialize experience memories D, D; and D, Initialize w in ¢(s, g, a;w)
Walk controller for M’ episodes on random subgoals G, and store (s,a,s’,r) to D Initialize controller’s experience memory, D;
Run Unsupervised Subgoal Discovery on D to initialize G Initialize agent’s experience memory, D
for episode =1,...,M do for episode =1,..., M do
Initialize state so € S, s < s¢ Initialize state sy € S, 5 < s¢

G+ 0 Select a random subgoal g from G

repeat for each stept=1,....T
g <EPSILON-GREEDY(Q(s, G; W), €3) pcomputc 1.9 al,)'w) *
repaat fOIt' each Sterf E=lymuny T a +EPSILON-GREEDY(q(s, g. A; w), 1)
compute ¢(s, g, a; w) Take action a, observe s’ and external reward r
a <—EPSILON-GREEDY(q(s, g,.4; w), €1)

; ; Compute intrinsic reward 7 from internal critic
Take action a, observe s and external reward r Store controller’s intrinsic experience, (s, g,a,7,s’) to D;

Compute intrinsic reward 7 from internal critic Store agent’s experience, (s, a, s, r) to D

Store controller’s intrinsic experience, (s, g,a,7,s’) to D, Sample J; C D, and compute VL

Store agent’s transition experience, (s,a,r,s’) to D Update controller’s parameters, w < w —a; VL
Sample J; C D; and compute VL 54+ s

Update controller’s parameters, w < w — a;VL Decay exploration rate of controller €;

Sample J, C Dy and compute VL until s is terminal or subgoal ¢ is attained

Update meta-controller’s parameters, W <« W — axVL end for

s<s8, G« G+r
Decay exploration rate of controller €;
if experience e is an outlier (anomaly) then
Store s’ to the subgoals set G
Remove e from D
end if
until s is terminal or subgoal g is attained
Decay exploration rate of meta-controller €,
Store meta-controller’s experience, (s, g, G,s’) to D
Fit a K-means clustering on D every N step to update centroids of G
end for
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Figure 12: (a) The 4-room task with a key and a lock. (b) The results of the unsupervised
subgoal discovery algorithm with anomalies marked with black Xs and centroids with colored
ones. The number of clusters in K-means algorithm was set to K = 4. (¢) The result of
the unsupervised subgoal discovery for K = 6. (d) The results of the unsupervised subgoal
discovery for K = 8.
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' Montezuma’s Revenge

F.C. Linear (Output)
q(s, g, a; w)

F.C. Linear {Output)
Q(s, g; W)
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z z F.C. Linear 4+ ReLU F.C. Linear + ReLU =
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