Learning from noisy labels & Reinforcement Learning



Published as a conference paper at ICLR 2020

DIVIDEMIX: LEARNING WITH NOISY LABELS AS
SEMI-SUPERVISED LEARNING

Junnan Li, Richard Socher, Steven C.H. Hoi
Salesforce Research
{junnan.li, rsocher, shoi}@salesforce.com

ICLR 2020



I Contents

O Introduction

O Method

O Experiments



I Introduction

O Existing studies can be roughly divided into two main solutions.
® Filter Methods (detect potential noisy labels)
B 02U, Co-Teaching, Co-Teaching+, Decoupling, Abstention

® Directly Learning
B Robust loss designing
® Symmeftric Loss (ICCV'19), Normalized Loss (ICML'20)

B Robust Model
® MLNT (CVPR'19)

B Two steps end-to-end approaches
® 1. detection noise,
® 2. semi-supervised manner
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Figure 1: DivideMix trains two networks (A and B) simultaneously. At each epoch, a network models
its per-sample loss distribution with a GMM to divide the dataset into a labeled set (mostly clean) and an
unlabeled set (mostly noisy), which is then used as training data for the other network (i.e. co-divide). At each
mini-batch, a network performs semi-supervised training using an improved MixMatch method. We perform
label co-refinement on the labeled samples and label co-guessing on the unlabeled samples.
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Algorithm 1: DivideMix. Line 4-8: co-divide; Line 17-18: label co-refinement; Line 20: label co-guessing.

i

Input: ") and 0®, training dataset (X', ))), clean probability threshold 7, number of augmentations M,
sharpening temperature 7', unsupervised loss weight \,,, Beta distribution parameter o for MixMatch.

2 0,0 = WarmUp(X, Y, 00, 0@) // standard training (with confidence penalty)

3 while ¢ < MaxEpoch do

4 W@ = GMM (X, ), 9(1]) // model per-sample loss with 01 to obtain clean proabability for 0®

5 w = GMM (X, ), 5(2}) // model per-sample loss with ‘%) to obtain clean proabability for 6V

6 fork=1,2do // train the two networks one by one

7 xR — {(xi, yi, wi)|wi > 7,¥(xi,yi,w;) € (X, ), W(k})} // labeled training set for %)
U = {xilw: < 7,¥(zi,w;) € (X, W(m)} // unlabeled training set for 6%
for iter = 1 to num_iters do

10 From X'®), draw a mini-batch {(xp,yp,wp);b € (1,...,B)}

11 From 24", draw a mini-batch {up; b € (1,...,B)}

12 forb =1to Bdo

13 for m = 1to M do

14 Tp.m = Augment(xy) // apply m*™ round of augmentation to x,

15 Up.m = Augment(uy) // apply m*"™ round of augmentation to s,

16 end
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end

end

end

Py = % Em Pmodel (T m H(k]) // average the predictions across augmentations of xp
gp = wpyp + (1 — ws)pp

// refine ground-truth label guided by the clean probability produced by the other network
y» = Sharpen (i, T') // apply temperature sharpening to the refined label

gb = ﬁ ZﬂL (pmodel(ﬁb,ﬂl; H(U) T medel(ﬂ‘b,ﬂL; g(?]))
// co-guessing: average the predictions from both networks across augmentations of uy
q» = Sharpen(g,T') // apply temperature sharpening to the guessed label

end
X = {(ib,ﬂlﬁﬁb);b S (11"'33)}?” S (1&}M)}

Fal

U = {(itm, 35)ib € (1,..., B),m € (1,..., M)}

// augmented labeled mini-batch
// augmented unlabeled mini-batch

Lx, Ly = MixMatch(X, ) // apply MixMatch
L=Lx 4+ ALy ~+ A\Lyreg // total loss
0" = SGD(L,0™) // update model parameters
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O MixMatch with Label Co-Refinement and Co-Guessing
® Refine Label

Up = WpYp + (1 — wp)py.

U = Sharpen(ip, T') = yb Zyb%, forc=1,2, ...

® MixMatch

A ~ Beta(a, a),

A =max(\,1—)),
=N, + (1— )\f):r:gj
p' = Np1+ (1= X)pe.

MixMatch transforms X and U/ into X’ and U’
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O The total loss

E?c' — — ! Z chng(pfnodel(m; 9))

| X7
o, peX! ¢
1 2
Ly = a Z 1P — Pmoder (z; 0) ] -
o, peld’
1 c
'Cl"eg = Zﬂ'c ng e ; ; Z pmodel(m; 6) .
X+ e
c re X+

L=Lxy+ AN Ly + )Lrﬁmg.

In our experiments, we set A, as 1 and use A, to control the strength of the unsupervised loss.
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Dataset | CIFAR-10 | CIFAR-100
Method/Noise ratio | 20% | 50% | 80% | 90% || 20% | 50% | 80% | 90%
Method | Best | Last Cross-Entro Best | 86.8 | 794 | 629 | 427 || 620 | 467 | 199 | 10.1
Cross-Entropy 550 | 723 . Py Last | 827 | 579 | 261 | 168 || 618 | 373 | 88 | 3.5
F-correction (Patrini etall2017) | 87.2 | 83.1 Bootstrap Best | 86.8 | 798 | 633 | 429 || 62.1 | 466 | 199 | 102
M-correction (Arazo et al.| ) | 87.4 | 86.3 (Reed e[a].| |2{)15[} Last | 829 | 584 | 26.8 | 17.0 620 | 379 8.9 3.8
[terative-CV (Chen et al. 88.6 | 88.0 - .
P-correction (Vi & WalBOTOS 325 | 881 F-correction Best | 86.8 | 79.8 | 633 | 429 || 615 | 466 | 199 | 102
Joint-Optim (Tanaka et al] POT8) | $8.9 | 88.4 (Patrini et al]2017) Last | 83.1 | 594 | 262 | 188 || 614 | 373 | 9.0 | 3.4
Meta-Learning (Li et al | 2019) | 89.2 | 88.6 Co-teaching+* Best | 89.5 | 857 | 674 | 479 || 656 | 51.8 | 279 | 13.7
DivideMix 934 | 921 (Yu et all 2019) Last | 882 | 84.1 | 455 | 30.1 || 64.1 | 453 | 155 | 8.8
Mixup Best | 956 | 87.1 | 71.6 | 522 || 67.8 | 57.3 | 308 | 14.6
Aysm—CIFARlO (Zhang etal [2018) Last | 923 | 77.6 | 46.7 | 439 || 66.0 | 46.6 | 176 | 8.1
P-correction® Best | 924 | 89.1 | 77.5 | 589 || 694 | 57.5 | 31.1 | 153
(Yi & Wu|2019) Last | 920 | 887 | 76,5 | 582 || 68.1 | 564 | 207 | 8.8
Meta-Learning* Best | 929 | 893 | 774 | 587 || 685 | 592 | 424 | 195
(Li etal]2019) Last | 92.0 | 88.8 | 76.1 | 583 || 67.7 | 580 | 40.1 | 143
M-correction Best | 940 | 920 | 86.8 | 69.1 || 739 | 66.1 | 482 | 243
(Arazoetal [2019) Last | 93.8 | 919 | 866 | 687 || 734 | 654 | 476 | 205

Best | 96.1 | 946 | 93.2 | 76.0 || 773 | 746 | 60.2 | 315

DivideMix Last | 957 | 944 | 929 | 754 || 769 | 742 | 596 | 31.0

Table 1: Comparison with state-of-the-art methods in test accuracy (%) on CIFAR-10 and CIFAR-100
with symmetric noise. Methods marked by * denote re-implementations based on public code.

Sym



Method | Test Accuracy

Cross-Entrop 69.21
F-correction (Patrini et al.l 2017) 69.84
M-correction ((Arazo et ﬂ.,@'} 71.00
Joint-Optim (Tanaka et al.| ) 72.16
Meta-Cleaner ang et al. 9 72.50
Meta-Learning (Li et al.[ 20 73.47
P-correction (Y1 & Wu, 019[7 73.49
DivideMix | 74.76

Table 3: Comparison with state-of-the-art methods in test accuracy (%) on ClothinglM. Results for
baselines are copied from original papers.

Method | WebVision | ILSVRCI2
| topl | top5 | topl | top5
F-correction (Patrini et al.| 2017) 61.12 | 82.68 | 5736 | 82.36
Decoupling (Malach & Shalev-Shwartz, lﬂlﬂ 62.54 | 84.74 | 58.26 | 82.26
D2L (Ma et al][2018 62.68 | 84.00 | 57.80 | 81.36
MentorNet (Jiang et al.| 2018) 63.00 | 81.40 | 57.80 | 79.92
Co-teaching (Han et al., 2018 63.58 | 85.20 | 61.48 | 84.70
Iterative-CV (Chen et al.|[2019) 65.24 | 85.34 | 61.60 | 84.98
DivideMix | 77.32 | 91.64 | 75.20 | 90.84

Table 4: Comparison with state-of-the-art methods trained on (mini) WebVision dataset. Numbers
denote top-1 (top-5) accuracy (%) on the WebVision validation set and the ImageNet ILSVRC12
validation set. Results for baseline methods are copied from [Chen et al | (2019).




We study the effect of removing different components to provide insights into what makes DivideMix
successful. We analyze the results in Table Blas follows. Appendix C contains additional explanations.

Dataset | CIFAR-10 | CIFAR-100

Noise type | Sym. | Asym. || Sym.
Methods/Noise ratio | 20% | 50% | 80% | 90% | 40% || 20% | 50% | 80% | 90%
DivideMix Best | 96.1 | 94.6 | 93.2 | 76.0 | 93.4 773 | 74.6 | 60.2 | 31.5

Last | 95.7 | 944 | 92,9 | 754 | 92.1 769 | 74.2 | 59.6 | 31.0

Best | 952 | 942 | 93.0 | 75.5 | 92.7 752 | 72.8 | 58.3 | 29.9
Last | 95.0 | 937 | 924 | 742 | 914 748 | 72.1 | 57.6 | 29.2

Best | 950 | 940 | 926 | 743 | 919 748 | 723 | 56.7 | 27.7
Last | 948 | 933 | 92.2 | 73.2 | 90.6 74.1 | 717 | 56.3 | 27.2

Best | 96.0 | 946 | 93.0 | 73.7 | §87.7 769 | 742 | 58.7 | 26.9
Last | 955 | 942 | 92.7 | 73.0 | 86.3 764 | 73.9 | 58.2 | 26.3

Best | 953 | 94.1 | 92.2 | 73.9 | 89.5 765 | 73.1 | 58.2 | 26.9
Last | 949 | 935 | 91.8 | 73.0 | 88.4 76.2 | 72.6 | 58.0 | 26.4

. Best | 94.1 | 92.8 | 89.7 | 70.1 | 86.5 || 737 | 705 | 55.3 | 25.0
Divide and MixMatch Last | 935 | 923 | 89.1 | 68.6 | 85.2 || 724 | 69.7 | 53.9 | 23.7

DivideMix with 6 test

DivideMix w/o co-training

DivideMix w/o label refinement

DivideMix w/o augmentation

Table 5: Ablation study results in terms of test accuracy (%) on CIFAR-10 and CIFAR-100.
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I Open-set noisy labels [1]
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Figure 1. An illustration of closed-set vs open-set noisy labels.

[1] Iterative Learning with Open-set Noisy Labels. (CVPR’18)



I Open-set noisy labels
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Figure 1: Results of a search engine query to collect data for a
wolf-vs-dog binary classifier. The search keyword used here is
“wolf”. The images bounded by an orange box are open-set noise
(i.e. neither wolf nor dog) and the ones bounded by a blue box are
closed-set noise (i.e. labelled as wolf but are actually a dog).
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Algorithm 1: EvidentialMix (EDM)

(==

10
11
12

13
14
15
16
17

Input: D = {(x;, y.i)},!,:zll, number of
augmentations M, temperature sharpening
T, loss weights () and \("9) MixMatch
parameter «v, number of epochs .

fom (€]x), foes) (¢|x) = WarmUp(D)

while ¢ < E do

W, WP W = GMM(D, fys) (c]x))

// Train NetD

X = {(xi, yi, wi)|(xi, yi, wi) € (D, W), w; >

max(w, uf!))

U = {xi|(xi,yi) € D,ws > max(w;, w;")}

for iter=1to num_iters do

{(xp,¥p,wp)}., C X // randomly

pick B samples from X
{w}P2,cU// randomly pick B
samples from U

for b=1to B do

for m=1to M do

Xp, m = DataAugment(xy,)

1y ., = DataAugment(uy)

end

forc=1t0 |Y|do

Py(C) = 557 2 Poco (¢[Xp,m)
ay(c) = 17 3, ooy (c|tp )

end

18

19

R R R R

S

28
29

30
31 end

end

//

Z/} = {(ﬁb,nuflb)}be{l ..... B),me(1

Vb =
TempSharpeny (wpyp + (1 — wp ) ps)
qp = TempSharpenr(qp)
end

X = {(Xp,m> ¥b) Yoe(1,...,B),me(1,....M)

X’,U' = MixMatch, (X, 1)
9P) = SGD(LWP), 0 P) x" U’

Train NetS

for i=1to |D| do

end

C; =

arg max.ey [(wS)pco (clx;) + (1 — w)y;(c))]
yi = onehot(¢;)

8 = SGD(LS), 0 {(x:, 312
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O The loss for training Net-D is the same as that of DivideMix.

O The loss for training Net-S

D]

1 |D|
'ﬁ{:S) — T g{:S) 13 ijg{:S) ? D — {(x?ﬂ Y’E)}tzl
D ; (xi,yi,0)
E(S)(X' Vi 9(3)) — %(Y(C}Cﬁ /S)z_l_c‘ftc(st — C}fic)
() T CZl (! 1C T ‘5112(‘51’E —|— 1) |
(2)

where a;. = ©(focs)(c|x;)) + 1 for class ¢ € {1,..., |V|},
with ¢(.) representing the ReLU activation function, and

Y
Si — Zlczll e
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p | 0.3 0.6
w | 0 o025 | 05 | o075 | 1 || o 025 | 05 | 075 | 1
ResNet-101 9-Layer CNN
CIFAR-10
10% 20% 40% 80% Pair 10% 10% 20% 40% 80% Pair 10%
Direct Traing 88.31%  83.00% 65.66% 15.91% B88.17T% B2.67%  76.42%  56.08% 17.67%  83.83%
Soft Bootstrapping 88.87%  83.20% 69.91% 18.12%  90.08% 82.68%  75.21%  54.55% 17.65%  83.55%
Hard Bootstrapping 589.69%  84.88% 68.90% 15.59% 89.17T% 82.96%  75.00%  58.08% 18.18%  84.21%
MentorNet DD 02.80%  91.23%  88.64%  46.31% 91.02% B4.7T8%  80.7T1%  72.96% 28.19%  85.94%
CurnculumNet 90.59%  84.65% 69.45% 17.95%  90.45% 81.71%  7T4.02%  57.55% 16.23%  83.62%
Co-Teaching 90.36%  87.26% B82.80% 26.23% 90.T7T% 85.60% 82.66% T7.42% 22.60%  85.83%
02U-net (Cycle Length 10) | 93.58%  9257% 90.33% 37.76%  94.14% R87.35%  B84.85% 73.34% 33.18% B8B.0TR%
02U-net (Cycle Length 50) | 93.67% 91.60%  89.59%  43.41% 93.99% 87.64% 85.24% 79.64% 34.93% 88.22%
EDM (Ours) Best 929 ‘ 93.8 | 94.5 94.8 | 95.3 || 9.6 | 92.9 ‘ 93.4 ‘ 93.7 94.3
Last 91.9 93.1 94.0 94.5 95.1 89.4 914 92.8 93.4 94.0

Table 1: Benchmark results of all competing methods and our proposed EDM. Clean data was sampled from CIFARI10,
while the open-set noise came from ImageNet32 and CIFAR-100. The total noise in the training data is represented by
p € {0.3,0.6}, where the closed-set proportion of this noise is w € {0, 0.25, 0.5,0.75, 1} and open-set proportion is 1 — w.
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Figure 4: t-SNE plots of the related methods and our proposed EDM, where the total noise rate is p = 0.6 with the closed-set proportion
being w = 0.5, and CIFAR-100 and ImageNet32 representing open-set data sets. The brown samples represent the open-set noise, while
the other colours denote the true CIFAR-10 classes.
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I An example

No external reward

when agent wonders around.
when agent picks the key

when agent opens all doors

when agent opens the locked door

Agent
(partial observability)

L] ;
B until the agent reaches the goal




I Intrinsic Rewards

O Motivation
® To motivate agents for exploration before any extrinsic rewards
are obtained.
® Efficient exploration under sparse rewards.

O Intrinsic Rewards
® Curiosity-driven (CVPR'17)
® Count-based (NIPS'16)
® State-diff

B Finally, state-diff approaches offer rewards if, for each trajectory,
representations of consecutive states differ significantly.
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BeBold (Beyond the Boundary of Explored Regions)

M: max (N(slt+1) N(lst) ’ 0>

Intrinsic Reward \

Inverse of visitation counts

St+1

N
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BeBold Small N(s)

Agent Trajectory

Boundary

*(s¢,a¢) = max ! ! * St41) =



Start
RND IEI“. ﬂ E E

1. RND assigns high IR 2. RND temporarily focuses 3. RND by chance starts 4. RND re-explores the
(dark green) throughout on the upper right corner exploring the bottom right upper right and forgets the
the environment (yellow) corner heavily, resulting in bottom right, gets trapped

the IR at top right higher
than bottom right

o % @
1. BeBold assigns high IR 2. BeBold pushes every 3. BeBold continuously 4. BeBold reaches the end
(dark red) near the start direction to the frontier of pushes the exploration of exploration
and low IR for the rest exploration uniformly frontier

(light red) (yellow)
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Figure 3: Results for various hard exploration environments from MiniGrid. BeBold successfully solves all
the environments while all other baselines only manage to solve two to three relatively easy ones.
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