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Fig. Left: Drawing of a dollar bill from memory.
Right: Drawing subsequently made with a dollar bill present
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Figure 2. A simple framework for contrastive learning of visual
representations. Two separate data augmentation operators are
sampled from the same family of augmentations (t ~ 7 and
t' ~ T) and applied to each data example to obtain two correlated
views. A base encoder network f(-) and a projection head g(-)
are trained to maximize agreement using a contrastive loss. After
training is completed, we throw away the projection head g(-) and
use encoder f(-) and representation h for downstream tasks.
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Representation Learning Framework:

e Data Augmentation module, Aug(-).
e Encoder Network, Enc(-)

e Projection Network, Proj(-)
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Representation Learning Framework:
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(a) Supervised Cross Entropy (b) Self Supervised Contrastive (c) Supervised Contrastive




' Method 2Ny

Contrastive Loss Functions
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Here, z¢y = Proj(Enc(z,)) € RP*, the - symbol denotes the inner (dot) product, 7 € R is a

scalar temperature parameter, and A(i) = I \ {i}. The index 7 is called the anchor, index j(7) is
called the positive, and the other 2(N — 1) indices ({k € A(7) \ {j(¢)}) are called the negatives.
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Loss Top-1
L2 78.7%

out

£ 67.4%

Table 1: ImageNet Top-1 classification
accuracy for supervised contrastive

losses on ResNet-50 for a batch size of
6144.
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Classification Accuracy

Dataset SIMCLR[?] Cross-Entropy Max-Margin [37] SupCon

CIFARI10 93.6 95.0 92.4 96.0

CIFAR100 70.7 75.3 70.5 76.5

ImageNet 70.2 78.2 78.0 78.7
Loss Architecture Augmentation Top-1 Top-5
Cross-Entropy (baseline) ResNet-30 MixUp [6]] 77.4 93.6
Cross-Entropy (baseline) ResNet-50 CutMix [60] 78.6 941
Cross-Entropy (baseline) ResNet-50 AutoAugment [5] 78.2 92.9
Cross-Entropy (our impl.)  ResNet-50 AutoAugment [50] 77.6 95.3
SupCon ResNet-50 AutoAugment [5] 78.7 94.3
Cross-Entropy (baseline)  ResNet-200 AutoAugment [5] 80.6 95.3
Cross-Entropy (our impl.)  ResNet-200  Stacked RandAugment [4Y]  80.9 95.2
SupCon ResNet-200  Stacked RandAugment [4Y9]  81.4 95.9

SupCon ResNet-101  Stacked RandAugment [+Y] 30.2 94.7
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Robustness
L.oss Architecture rel. mCE mCE ;:;p-;l- Accuracy vs Corruption Severity - Imag,ehllet

Cross-Entropy AlexNet [2¥] 100.0 100.0 g7
(baselines) VGG-194+BN [44] 1229 81.6 S 60.0
ResNet-18 [l T] 103.9 84.7 Esﬂu

Cross-Entropy ResNet-50 96.2  68.6 2 400l T Resnerso Croms Ereopy

(our implementation) ResNet-200 69.1 524 P01 T ReaNet 200 cross Entropy

Supervised Contrastive ResNet-50 946 67.2 - " Corruption Severity 5

ResNet-200 66.5 50.6

Figure 3: Training with supervised contrastive loss makes models more robust to corruptions in images. Left:
Robustness as measured by Mean Corruption Error (mCE) and relative mCE over the ImageNet-C dataset
[19] (lower is better). Right: Mean Accuracy as a function of corruption severity averaged over all various
corruptions. (higher 1s better).




- ERTLIPET]
' Experiments _nanies| (g
Hyperparameter Stability

Top-1 Accuracy vs Batch size
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Top-1 Accuracy
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Training Details

~Top-1 Accuracy vs Epochs
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150 10P-1 Accuracy vs Temperature
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