

Supervised Contrastive Learning

Prannay Khosla *

Google Research

Piotr Teterwak *

Boston University

Chen Wang †

Snap Inc.

Aaron Sarna ‡

Google Research

Yonglong Tian

MIT

Phillip Isola MIT **Aaron Maschinot**

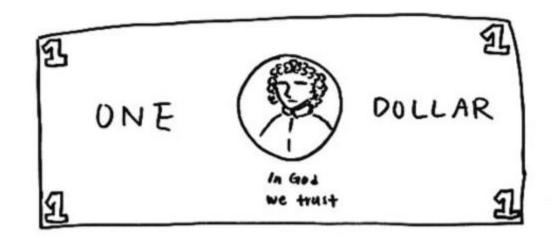
Google Research

Ce Liu
Google Research

Dilip KrishnanGoogle Research

NIPS 2020

Contrastive Learning



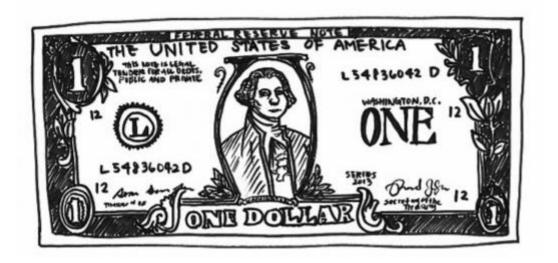


Fig. Left: Drawing of a dollar bill from memory.

Right: Drawing subsequently made with a dollar bill present

- 通过数据之间的对比进行表示学习
- 让像的样本所得表示差异小, 让不像的样本所得表示差异大

Contrastive Learning---SimCLR

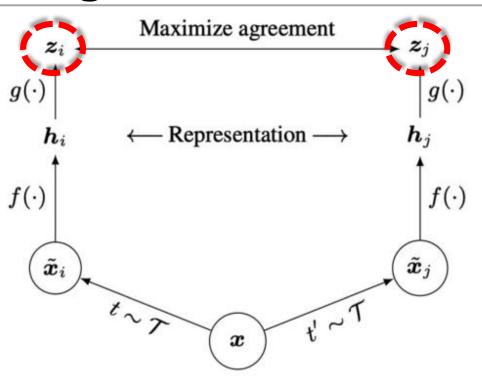
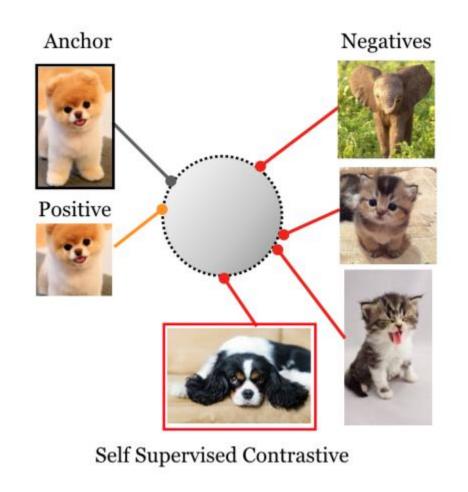
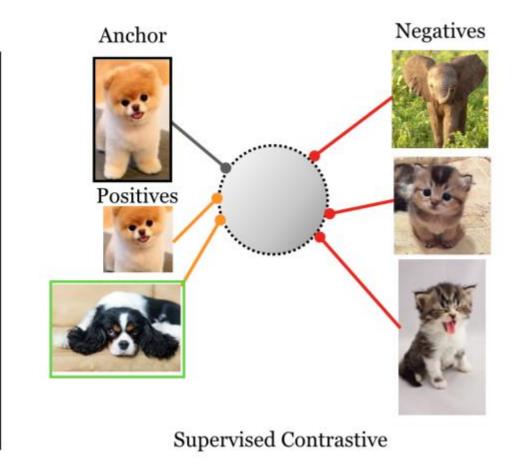


Figure 2. A simple framework for contrastive learning of visual representations. Two separate data augmentation operators are sampled from the same family of augmentations ($t \sim T$ and $t' \sim T$) and applied to each data example to obtain two correlated views. A base encoder network $f(\cdot)$ and a projection head $g(\cdot)$ are trained to maximize agreement using a contrastive loss. After training is completed, we throw away the projection head $g(\cdot)$ and use encoder $f(\cdot)$ and representation h for downstream tasks.

Supervised Contrastive Learning





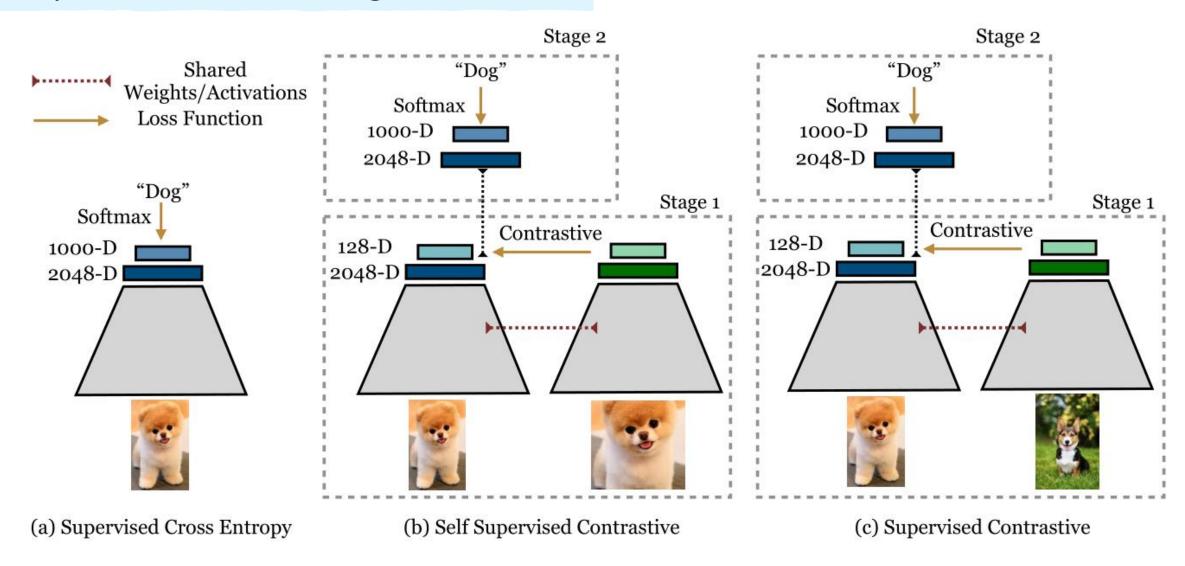
Method

Representation Learning Framework:

- Data Augmentation module, $Aug(\cdot)$.
- Encoder Network, $Enc(\cdot)$
- Projection Network, $Proj(\cdot)$

Method

Representation Learning Framework:



Method

Contrastive Loss Functions

$$\mathcal{L}^{self} = \sum_{i \in I} \mathcal{L}_i^{self} = -\sum_{i \in I} \log \frac{\exp\left(\mathbf{z}_i \cdot \mathbf{z}_{j(i)} / \tau\right)}{\sum_{a \in A(i)} \exp\left(\mathbf{z}_i \cdot \mathbf{z}_a / \tau\right)}$$
(1)

Here, $\mathbf{z}_{\ell} = Proj(Enc(\tilde{\mathbf{x}}_{\ell})) \in \mathcal{R}^{D_P}$, the • symbol denotes the inner (dot) product, $\tau \in \mathcal{R}^+$ is a scalar temperature parameter, and $A(i) \equiv I \setminus \{i\}$. The index i is called the *anchor*, index j(i) is called the *positive*, and the other 2(N-1) indices $(\{k \in A(i) \setminus \{j(i)\})$ are called the *negatives*.

$$\mathcal{L}_{out}^{sup} = \sum_{i \in I} \mathcal{L}_{out,i}^{sup} = \sum_{i \in I} \frac{-1}{|P(i)|} \sum_{p \in P(i)} \log \frac{\exp(\boldsymbol{z}_i \cdot \boldsymbol{z}_p / \tau)}{\sum_{a \in A(i)} \exp(\boldsymbol{z}_i \cdot \boldsymbol{z}_a / \tau)}$$
(2)

$$\mathcal{L}_{in}^{sup} = \sum_{i \in I} \mathcal{L}_{in,i}^{sup} = \sum_{i \in I} -\log \left\{ \frac{1}{|P(i)|} \sum_{p \in P(i)} \frac{\exp\left(\mathbf{z}_i \cdot \mathbf{z}_p / \tau\right)}{\sum_{a \in A(i)} \exp\left(\mathbf{z}_i \cdot \mathbf{z}_a / \tau\right)} \right\}$$
(3)

Loss	Top-1
\mathcal{L}_{in}^{sup}	78.7% 67.4%

Table 1: ImageNet Top-1 classification accuracy for supervised contrastive losses on ResNet-50 for a batch size of 6144.

Classification Accuracy

Dataset	SimCLR[3]	Cross-Entropy	Max-Margin [32]	SupCon
CIFAR10 CIFAR100	93.6 70.7	95.0 75.3	92.4 70.5	96.0 76.5
ImageNet	70.2	78.2	78.0	78.7

Loss	Architecture	Augmentation	Top-1	Top-5
Cross-Entropy (baseline)	ResNet-50	MixUp [61]	77.4	93.6
Cross-Entropy (baseline)	ResNet-50	CutMix [60]	78.6	94.1
Cross-Entropy (baseline)	ResNet-50	AutoAugment [5]	78.2	92.9
Cross-Entropy (our impl.)	ResNet-50	AutoAugment [30]	77.6	95.3
SupCon	ResNet-50	AutoAugment [5]	78.7	94.3
Cross-Entropy (baseline)	ResNet-200	AutoAugment [5]	80.6	95.3
Cross-Entropy (our impl.)	ResNet-200	Stacked RandAugment [49]	80.9	95.2
SupCon	ResNet-200	Stacked RandAugment [49]	81.4	95.9
SupCon	ResNet-101	Stacked RandAugment [49]	80.2	94.7

Robustness

Loss	Architecture	rel. mCE	mCE
Cross-Entropy (baselines)	AlexNet [28] VGG-19+BN [44] ResNet-18 [17]	100.0 122.9 103.9	100.0 81.6 84.7
Cross-Entropy (our implementation)	ResNet-50	96.2	68.6
	ResNet-200	69.1	52.4
Supervised Contrastive	ResNet-50	94.6	67.2
	ResNet-200	66.5	50.6

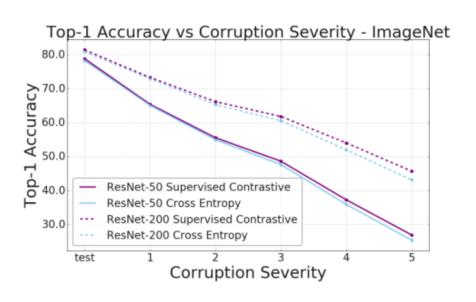
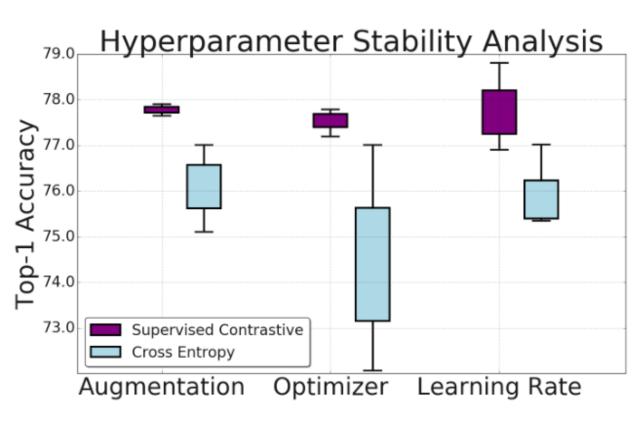
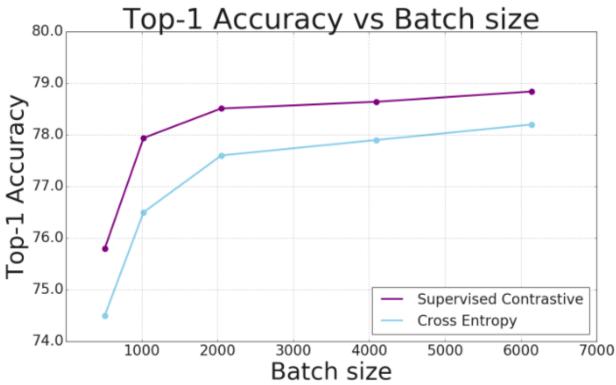


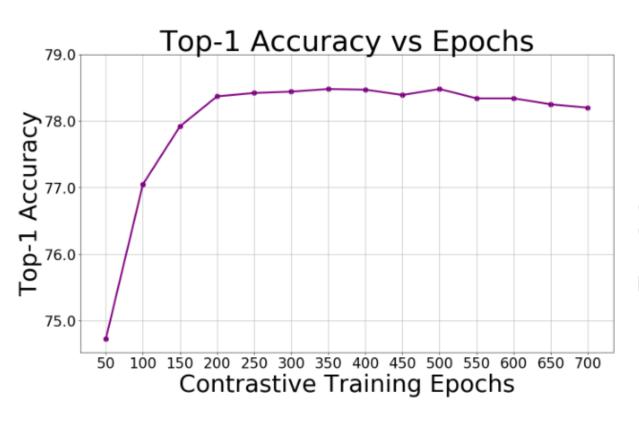
Figure 3: Training with supervised contrastive loss makes models more robust to corruptions in images. **Left**: Robustness as measured by Mean Corruption Error (mCE) and relative mCE over the ImageNet-C dataset [19] (lower is better). **Right**: Mean Accuracy as a function of corruption severity averaged over all various corruptions. (higher is better).

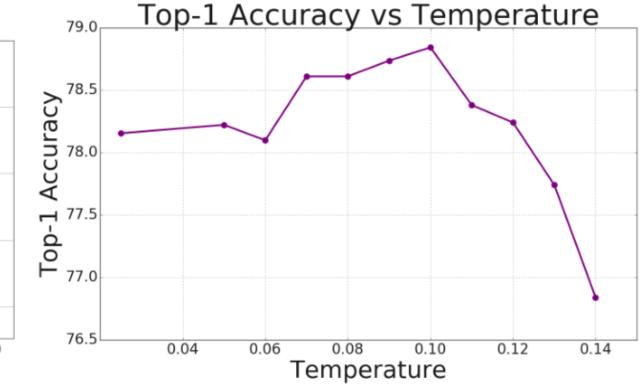
Hyperparameter Stability





Training Details





THANKS