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> Adversarial Attack:

Find a new input (similar to original input ) but classified as another class t (untargeted or targeted)
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> Adversarial Attacks:

v" White-box Attacks:
* The attacker knows the detailed information about the victim model (model architecture,
parameters, and class probabilities).
* Success rate of white-box attack reaches almost 100%.

v’ Black-box Attacks:
* The attacker cannot access the architecture, the parameters, or the training data of the victim
model.
*  Only query the victim model.

v" No-box Attacks:
v" The attacker can neither access the model information or the training set nor query the
model.
v The attacker can only gather a small number of examples from the same problem domain
as that of the victim model.
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» White-box Adversarial Attacks:

v’ Fast-gradient sign method (FGSM):
* Take a step in the direction of the gradient of the loss function:
x* =x+€-sign(Vlossp(x))

* Thisis simple and good performance.

Gradient Descent

v’ lterative FGSM (I-FGSM): a,1 =a, —YVF(a,)

 Update version of the FGSM.
* Instead of changing the amount of €, a smaller amount of a is used.
 Clipped by the same € :

x; = x;_q + clipe(a - sign(Vlossp(x;_1))
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> Black-box Adversarial Attacks:

v" Transfer attacks

Adversarial examples often transfer between different models.

Train an alternative model and perform white-box attacks on it to generate adversarial examples.
Suffer from transfer loss.

Use one query to the target model for each attempted candidate transfer.

v" Optimization attacks

Formulate the attack goal as a black-box optimization problem.

Can be divided into three types: Gradient Attacks, Gradient-free Attacks, Restricted Black-box Attacks.
Do not suffer from transfer loss.

Often require many queries for each attempted candidate transfer.
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» Self-supervised learning (SSL) :

Supervised Unsupervised Self-supervised
implausible labels limited power derives label from a
co-occuring input to
! |cow| ! related information
Target /-\
b
O O O O O O O O O O O O
: : : : Another
O OO0 O0OO0OO0O O0O0O0O OO O O |modalty/form,
ﬁ ﬁ ﬁ ﬁ or parts of
Input Input Input 1 Input 2 inputs

SSL exploits surrogate supervision from unlabeled data for gaining high-level data understanding of data.
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» Self-supervised learning (SSL) :

Rotate Jigsaw

The core of self-supervised learning is how to automatically generate labels for data.
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Consider the No-box scenario where the attacker can gather a dataset with very limited size.
What comes uppermost in mind is to utilize the transferability of adversarial examples.

However, current supervised learning for DNNs require large-scale training to generalize.

To achieve the goal, one should first develop proper training mechanisms and “substitute”
architectures.
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> Auto-encoder:

v Such a model is capable of capturing low-level image representations without suffering from
severe over-fitting.

v Discriminative ability is by no means entailed and thus adversarial examples crafted against the
model are difficult to transfer to the victim models.

n—1

1
L =—- E |Dec(Enc(z;)) — ;||
n
i=0
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» Reconstruction from chaos :

v" Two tasks:
 The front view of each rotated images.
* The prefect fit of each possible jigsaw puzzle.

v’ Their learning objectives are commonly formulated as:
1 n—1

Lrotation/jigsaw — E Z HDeC(EnC(T(m’b))) - 33@”2
i=0

T(-) is designed to rotate images or shuffle image patches
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» Prototypical image reconstruction:
v" Encourage the model to reconstruct class-specific prototypes.

v The learning objective is commonly formulated as:

Prototypical

n—1
1 2 2
Lprototypical - E ((1 o y’b) ‘DGC(EHC(CL‘,L-)) o 33(0) H - Vi HDGC(EHC(CL’Z)) - CE(l)H )
n

1=0

In which: z(?) ¢ {x;|y; =0} and z(1) e {:L‘,L|yz = 1} are randomly chosen image prototypes.

It is possible to introduce more than one decoder with this mechanism, by
sampling multiple pairs of image prototypes from the two classes.
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» Making predictions:

v Single-decoder:

Y = arg min HDec(Enc(g;)) _ )
ye{0,1}

v" Multiple-decoder:

K—1

- 1 ()

j = argmin— 3 [IDecy(Enc(x)) — 2|
yE{O,]} K ;—0
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» The learning objective is finally formulated as :

exp (—A||Dec(Enc(z;)) — & ||)
> ;exp (—A|[Dec(Enc(z;)) — z;|?)

Ladversarial — logp(y@\:c@) where p(yz|$z) —

In which:
» A\ > ( is ascaling parameter
> Ti = T for reconstructing images from rotations and jigsaw puzzles.

> I = 2(0) for the prototypical reconstruction models with Z; labeling as ¥; = 0 .
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> |-FGSM + ILA:

v" |-FGSM (gradient-based baseline attacks)

* *

x; = x;_q — clipc(a - sign(Vlossg (x;_1)

v ILA (enhancing adversarial example transferability)

Label: Eft
Squirrel
Bulbul ResNet18 Monkey
DenseNet121
SqueezeNet Hamster

AlexNet Eft

Eft Weasel

— ILA —>
Eft

Eft

—_— -

.4' v
—_—— -

ResNet18 Adversarial Example ILA Mddification
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Table 1: Compare the transferability of adversarial examples crafted on different models on ImageNet.
The prediction accuracy on adversarial examples under € = 0.1 are shown (lower is better).

Method Sy VGG-19  Inception ResNet  DenseNet SENet WRN PNASNet MobileNet Averace
P [42] v3 [45] [15] [17] [16] [56] 28] v2 [39] 5
Naive? X 45.92% 63.94% 60.64% 56.48% 65.54% 58.80% 73.14% 37.76% 57.78%
Jigsaw X 31.54% 50.28% 46.24% 42 .38% 59.06% 51.24% 62.32% 25.24% 46.04%
Rotation X 31.14% 48.14% 47.40 % 41.26% 58.20% 50.72% 59.949 26.00% 45.35%
Naive! v 76.20% 80.86% 83.76% 78.94% &87.00% 84.16% 86.96% 72.44% 81.29%
Prototypical v 19.78% 36.46% 37.92% 29.16% 44.56% 37.28% 48.58% 17.78% 33.94%
Prototypical* v 18.74% 33.68% 34.72% 26.06% 42 .36% 33.14% 45.02% 16.34% 31.26%
Beyonder v 24.96% 51.12% 30.30% 27.12% 43.78% 33.94% 51.80% 27.02% 36.26%

* The prototypical models with multiple decoders. To be more specific, 20 decoders are introduced in each model.
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Table 2: Compare the transferability of adversarial examples crafted on different models on ImageNet.
The prediction accuracy on adversarial examples under € = 0.08 are shown (lower is better).

Method Su VGG-19  Inception ResNet  DenseNet  SENet WRN PNASNet MobileNet Average
b 7] v3 [8] [1] (3] 2] [9] 4] v2 (5] .
Naive* X 53.92% 70.18% 68.16% 63.98% 72.48% 66.66% 78.28% 47.38% 65.13%
Jigsaw X 40.00% 58.20% 55.66% 50.30% 66.62% 59.52% 70.36% 34.60% 54.41%
Rotation X 38.88% 56.16% 57.06% 49.56% 65.30% 58.14% 67.70% 34.64% 53.43%
Naive' v 76.64% 81.24% 83.98% 79.54% 87.14% 84.30% 87.12% 73.16% 81.64%
Prototypical v 30.80% 49.28% 50.56% 40.30% 56.58% 48.88% 60.94% 28.50% 45.73%
Prototypical* v 30.08% 45.74% 47.28% 37.66% 54.42 % 44 .82 % 57.58% 27.32% 43 11%
Beyonder v 27.70% 53.58% 33.74% 30.58% 46.70% 37.26% 54.92% 20.42% 39.249%

* The prototypical models with multiple decoders. To be more specific, 20 decoders are introduced in each model.
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Figure 6: Visual explanation of how the Beyonder adversarial examples and our no-box adversarial
examples fool the VGG-19 victim model. Grad-CAM is used.
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Figure 7. How the attack performance of our approach varies with the number of training images on
ImageNet. Lower average accuracy indicate better performance in attacking the victim models.
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Table 4: How the number of prototypical decoders impact attack performance on ImageNet victim
models. Results are obtained under ¢, attacks with € = 0.1. Lower is better.

#decoders VGrG— 19 Inception RefsNet DenseNet SENet WRN PNASNet MobilﬁeNet Average
‘ 7] v3 [8] [1] [3] 2] 19] [4] v2 [5]

1 19.78% 36.46% 37.92% 29.16% 44.56% 37.28% 48.58% 17.78% 33.94%

19.48% 34.32% 35.90% 26.44% 42.70% 34.72% 46.12% 17.37% 32.13%

10 19.16% 34.18% 35.00% 25.94% 42.14% 33.16% 45.22% 17.18% 31.50%

0 18.74% 33.68% 34.72% 26.06% 42.36% 33.14% 45.02% 16.34% 31.26%
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Table 5: Compare the transferability of different baseline attacks on the prototypical auto-encoding
models on ImageNet, under e = 0.1. The prediction accuracy of the victim models on different sets
of adversarial examples are shown (lower is better). PGD incorporates randomness in attacks, but we
observed that the standard derivation of the attack performance among different runs are small (e.g.,
itis only 0.06% for VGG-19, 0.12% for Inception v3, and 0.16% for ResNet), hence we omit it and
only report the mean performance of “PGD+ILA” over 5 runs for clearer comparison in the table.

Method VGG-19  Inception ResNet DenseNet SENet WRN PNASNet MobileNet Averace

[7] v3 [8] [1] [3] [2] [9] [4] v2 [5] e
None+ILLA 19.52% 35.62% 35.76% 27.08% 43.44% 34.24% 46.42% 17.64% 32.47%
[I-FGSM+ILA 18.74% 33.68% 34.72% 26.06% 42.36% 33.14% 45.02% 16.34% 31.26%

PGD+ILA 18.02% 32.06% 33.64% 23.62% 40.78% 31.88% 43.64% 14.94% 29.82%
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Attack FaceNet Attack CosFace Attack FaceNet Attack CosFace
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Figure 5: ROC curves of face verification on adversarial examples crafted on different substitute
models. The left two sub-figures show unsupervised results and the right two show supervised results.
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Figure 2. Performance of random sampling, VAAL [29], DBAL [10], and core-set [27] compared with PAL (proposed) on CIFAR-10,
CIFAR-100, SVHN and Caltech-101. Markers show mean accuracy of five runs, and vertical bars show standard deviation (some are too

small to be visible). *Note that VAAL takes prohibitively long to train due to the use of a VAE. Therefore, we report results on CIFAR-100
Jfrom the original paper, and exclude results of VAAL on Caltech-101.
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