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Introduction

Find a new input (similar to original input ) but classified as another class t (untargeted or targeted) 

➢ Adversarial Attack: 
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Introduction

➢ Adversarial Attacks: 

✓ White-box Attacks:
• The attacker knows the detailed information about the victim model (model architecture, 

parameters, and class probabilities).
• Success rate of white-box attack reaches almost 100%.

✓ Black-box Attacks:
• The attacker cannot access the architecture, the parameters, or the training data of the victim 

model.
• Only query the victim model.

✓ No-box Attacks: 
✓ The attacker can neither access the model information or the training set nor query the 

model.
✓ The attacker can only gather a small number of examples from the same problem domain 

as that of the victim model.
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Introduction

➢ White-box Adversarial Attacks: 

✓ Fast-gradient sign method (FGSM):
• Take a step in the direction of the gradient of the loss function:

• This is simple and good performance.

✓ Iterative FGSM (I-FGSM):

• Update version of the FGSM.
• Instead of changing the amount of Ɛ, a smaller amount of α is used.
• Clipped by the same Ɛ :

Gradient Descent
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Introduction

➢ Black-box Adversarial Attacks: 

✓ Transfer attacks

• Adversarial examples often transfer between different models.
• Train an alternative model and perform white-box attacks on it to generate adversarial examples.
• Suffer from transfer loss.
• Use one query to the target model for each attempted candidate transfer.

✓ Optimization attacks

• Formulate the attack goal as a black-box optimization problem.
• Can be divided into three types: Gradient Attacks, Gradient-free Attacks, Restricted Black-box Attacks.
• Do not suffer from transfer loss.
• Often require many queries for each attempted candidate transfer.
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Introduction

➢ Self-supervised learning (SSL) : 

SSL exploits surrogate supervision from unlabeled data for gaining high-level data understanding of data.

Another 
modality/form, 
or parts of 
inputs
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Introduction

➢ Self-supervised learning (SSL) : 

The core of self-supervised learning is how to automatically generate labels for data.
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Motivation

Consider the No-box scenario where the attacker can gather a dataset with very limited size.

What comes uppermost in mind is to utilize the transferability of adversarial examples.

However, current supervised learning for DNNs require large-scale training to generalize.

To achieve the goal, one should first develop proper training mechanisms and “substitute” 
architectures.
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Architecture-1

➢ Auto-encoder: 

✓ Such a model is capable of capturing low-level image representations without suffering from     
severe over-fitting.

✓ Discriminative ability is by no means entailed and thus adversarial examples crafted against the 
model are difficult to transfer to the victim models.
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Architecture-2

➢ Reconstruction from chaos : 

✓ Two tasks:
• The front view of each rotated images.
• The prefect fit of each possible jigsaw puzzle.

✓ Their learning objectives are commonly formulated as:

T(۰) is designed to rotate images or shuffle image patches
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Architecture-3

➢ Prototypical image reconstruction: 

✓ Encourage the model to reconstruct class-specific prototypes.

✓ The learning objective is commonly formulated as:

In which:                                          and                                           are randomly chosen image prototypes.

It is possible to introduce more than one decoder with this mechanism, by
sampling multiple pairs of image prototypes from the two classes.
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Method

➢ Making predictions:

✓ Single-decoder:

✓ Multiple-decoder:
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Method

➢ The learning objective is finally formulated as : 

In which: 

➢ is a scaling parameter

➢ for reconstructing images from rotations and jigsaw puzzles.

➢ for the prototypical reconstruction models with       labeling as                .
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Attack

➢ I-FGSM + ILA:

✓ I-FGSM (gradient-based baseline attacks)

✓ ILA (enhancing adversarial example transferability)
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Experiment-image classification
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Experiment-image classification
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Experiment-image classification
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Experiment-image classification
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Experiment-Number of training images
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Experiment-Number of prototypical decoders
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Experiment-Other baseline attacks
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Experiment-face verification
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Pretext-based Active Learning
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Method

Out of distribution

𝑆𝑐

𝑆𝑅
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Experiment
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