

Self-Paced Robust Learning for Leveraging Clean Labels in Noisy Data

Xuchao Zhang,¹ Xian Wu,² Fanglan Chen,¹ Liang Zhao,³ Chang-Tien Lu¹

¹Discovery Analytics Center, Virginia Tech, Falls Church, VA, ²University of Notre Dame, Notre Dame, IN, ³George Mason University, Fairfax, VA ¹{xuczhang, fanglanc, ctlu}@vt.edu, ²xwu9@nd.edu, ³lzhao9@gmu.edu

AAAI 2020

D Phenomena

Real-world datasets contain erroneously labeled data samples.
Well-labeled data is usually expensive.

□ Problem

How to train a robust model by using large-scale noisy data in conjunction with a small set of clean data ?

Problem Formulation

□ Split the samples

1. Clean Set (a small set of well-labeled samples with little data corruption): $D_s = \{(x_1, y_1), \dots, (x_k, y_k)\}$ 2. Noisy Set (a weakly labeled dataset): $n \gg k$

 $\mathcal{D}_w = \{(\boldsymbol{x}_{k+1}, y_{k+1}), \dots, (\boldsymbol{x}_n, y_n)\}$

🗖 Goal

$$\hat{w} = \underset{w \in \mathcal{R}^{p}}{\operatorname{arg\,min}} \sum_{i \in \mathcal{D}_{s} \cup \mathcal{D}_{w}^{+}} \mathcal{L}(y_{i}, f(x_{i}, w)) + \psi(w)$$

the uncorrupted data samples in \mathcal{D}_{w}

Challenges

1. \mathcal{D}_w^+ in \mathcal{D}_w is unknown. Can't simply ignore \mathcal{D}_w , because $n \gg k$. 2. \mathcal{D}_w can be extremely noisy.

SPRL Algorithm

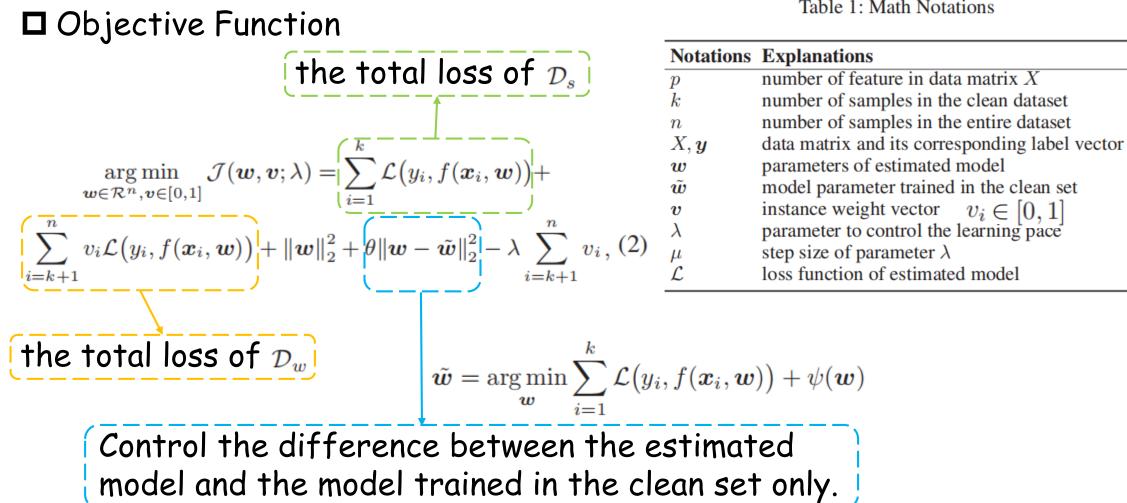


Table 1: Math Notations

SPRL Algorithm

$$\Box \text{ fix } w$$

$$v_i^{t+1} = \underset{v_i \in [0,1]}{\operatorname{arg\,min}} \sum_{i=k+1}^n v_i \mathcal{L}(y_i, f(\boldsymbol{x}_i, \boldsymbol{w}^t)) - \lambda^t \sum_{i=k+1}^n v_i$$

closed-form solution:

$$v_i^{t+1} = \begin{cases} 1, & \text{if } \mathcal{L}(y_i, f(\boldsymbol{x}_i, \boldsymbol{w}^t)) < \lambda^t \\ 0, & \text{otherwise} \end{cases}$$

🛛 fix 🛛

$$\boldsymbol{w}^{t+1} = \underset{\boldsymbol{w}\in\mathcal{R}^p}{\arg\min}\sum_{i=1}^{k} \mathcal{L}(y_i, f(\boldsymbol{x}_i, \boldsymbol{w}))$$

+
$$\sum_{i=k+1} v_i^{t+1} \mathcal{L}(y_i, f(x_i, w)) + ||w||_2^2 + \theta ||w - \tilde{w}||_2^2$$

Algorithm 1: SPRL ALGORITHM **Input:** $X \in \mathbb{R}^{p \times n}$, $y \in \mathbb{R}^n$, $\theta \in \mathbb{R}$, $\lambda^0 \in \mathbb{R}$, $\lambda_\infty \in \mathbb{R}$, $\mu \in \mathcal{R}$ **Output:** solution $w^{(t+1)}$, $v^{(t+1)}$ 1 $\tilde{\boldsymbol{w}} \leftarrow \arg\min_{\boldsymbol{w}} \sum_{i=1}^{k} \mathcal{L}(y_i, f(\boldsymbol{x}_i, \boldsymbol{w})) + \psi(\boldsymbol{w})$ 2 Initialize $w^0 = \tilde{w}, \varepsilon > 0, t \leftarrow 0$ 3 repeat for i = k + 1 ... n do 5 $v_i^{t+1} \leftarrow \infty \left(\mathcal{L}(y_i, f(\boldsymbol{x}_i, \boldsymbol{w}^t)) < \lambda^t \right)$ Update w^{t+1} by Equation (6) with fixed v^{t+1} and 6 $\lambda^{t+1} \leftarrow \lambda^t \ast \mu$ 8 if $\lambda^{t+1} > \lambda_{\infty}$ then 9 $\lambda^{t+1} \leftarrow \lambda_{\infty}$ $t \leftarrow t+1$ 10 11 until $\|\mathcal{J}(\boldsymbol{w}^{t+1}, \boldsymbol{v}^{t+1}; \lambda^{t+1}) - \mathcal{J}(\boldsymbol{w}^{t}, \boldsymbol{v}^{t}; \lambda^{t})\|_{2} < \varepsilon$ 12 return w^{t+1}, v^{t+1} Control the size of training set.

Convergence Analysis

□ Assumption 1 (Lower Bound)

The loss function \mathcal{L} *in problem* (2) *has a lower bound* \mathcal{B} *as follows:*

 $\mathcal{B} = \min_{\boldsymbol{w}} \mathcal{L}(\boldsymbol{y}, \boldsymbol{f}(\boldsymbol{x}, \boldsymbol{w})) > -\infty$ E.g. least-squares loss, hinge loss: $\mathcal{B} = 0$

🗖 Lemma 1

The objective function \mathcal{J} in Equation (2) is lower bounded as follows: $\lim_{t\to\infty} \mathcal{J}(\boldsymbol{w}^t, \boldsymbol{v}^t; \lambda^t) > -\infty$

□ Theorem 1

When Assumption 1 is satisfied, Algorithm 1 converges with the following property:

$$\lim_{t \to \infty} \left\| \mathcal{J}^{t+1} - \mathcal{J}^t \right\|_2 = 0$$

Convergence Analysis

Proof Lemma 1: $\mathcal{J}(\boldsymbol{w}^{t}, \boldsymbol{v}^{t}; \lambda^{t}) \stackrel{(a)}{\geq} \sum_{i=1}^{k} \mathcal{B} + \sum_{i=k+1}^{n} v_{i}^{t} \mathcal{B} + \|\boldsymbol{w}^{t}\|_{2}^{2} + \theta \|\boldsymbol{w}^{t} - \tilde{\boldsymbol{w}}\|_{2}^{2} - \lambda^{t} \sum_{i=k+1}^{n} v_{i}^{t} \stackrel{(b)}{\geq} k \mathcal{B} + \sum_{i=k+1}^{n} v_{i}^{t} \mathcal{B} - (n-k) \cdot \lambda_{\infty}$ inequality (a) $\mathcal{L}(y_i, f(\boldsymbol{x}_i, \boldsymbol{w}^t) \geq \mathcal{B} \text{ and } v_i^t \geq 0$ inequality (b) $\| \boldsymbol{w}^t \|_2^2 \ge 0, \theta \| \boldsymbol{w}^t - \tilde{\boldsymbol{w}} \|_2^2 \ge 0$ $\lambda \leq \lambda_{\infty}$ and $v_i \in [0,1]$ $\therefore \lambda^t \sum_{i=k+1}^n v_i^t \leq (n-k) \cdot \lambda_\infty$ \therefore when $B \ge 0$ we have $\sum_{i=k+1}^{n} v_i^t \mathcal{B} \ge 0$ when B < 0 we have $\sum_{i=k+1}^{n} v_i^t \mathcal{B} \ge (n-k) \cdot \mathcal{B}$ $\mathcal{J}(\boldsymbol{w}^{t},\boldsymbol{v}^{t};\boldsymbol{\lambda}^{t}) \geq k\mathcal{B} + \min\left\{0,(n-k)\cdot\mathcal{B}\right\} - (n-k)\cdot\boldsymbol{\lambda}_{\infty} = k\mathcal{B} + (n-k)\cdot\left(\min\left\{0,\cdot\mathcal{B}\right\} - \boldsymbol{\lambda}_{\infty}\right)$ $\mathcal{B} > -\infty$ and λ_{∞} is constant $\mathcal{J}(\boldsymbol{w}^t, \boldsymbol{v}^t; \lambda^t) > -\infty \text{ for } \forall t = 1 \dots \infty$

Proof Theorem 1: (1) \mathcal{J} is monotonically decreased. $\mathcal{J}(\boldsymbol{w}^{t+1}, \boldsymbol{v}^{t+1}; \lambda^{t+1}) \stackrel{(a)}{\leq} \sum_{i=1}^{k} \mathcal{L}(y_i, f(\boldsymbol{x}_i, \boldsymbol{w}^{t+1})) + \sum_{i=k+1}^{n} v_i^{t+1} \mathcal{L}(y_i, f(\boldsymbol{x}_i, \boldsymbol{w}^{t+1})) + \|\boldsymbol{w}^{t+1}\|_2^2 + \theta \|\boldsymbol{w}^{t+1} - \tilde{\boldsymbol{w}}\|_2^2 - \lambda^t \sum_{i=k+1}^{n} v_i^{t+1} + \lambda^{t+1} \|\boldsymbol{w}^{t+1}\|_2^2 + \theta \|\boldsymbol{w}^{t+1} - \tilde{\boldsymbol{w}}\|_2^2 - \lambda^t \sum_{i=k+1}^{n} v_i^{t+1} + \lambda^{t+1} \|\boldsymbol{w}^{t+1}\|_2^2 + \theta \|\boldsymbol{w}^{t+1} - \tilde{\boldsymbol{w}}\|_2^2 - \lambda^t \sum_{i=k+1}^{n} v_i^{t+1} \|\boldsymbol{w}^{t+1}\|_2^2 + \theta \|\boldsymbol{w}^{t+1} - \tilde{\boldsymbol{w}}\|_2^2 - \lambda^t \sum_{i=k+1}^{n} v_i^{t+1} \|\boldsymbol{w}^{t+1}\|_2^2 + \theta \|\boldsymbol{w}^{t+1} - \tilde{\boldsymbol{w}}\|_2^2 - \lambda^t \sum_{i=k+1}^{n} v_i^{t+1} \|\boldsymbol{w}^{t+1}\|_2^2 + \theta \|\boldsymbol{w}^{t+1} - \tilde{\boldsymbol{w}}\|_2^2 - \lambda^t \sum_{i=k+1}^{n} v_i^{t+1} \|\boldsymbol{w}^{t+1}\|_2^2 + \theta \|\boldsymbol{w}^{t+1} - \tilde{\boldsymbol{w}}\|_2^2 + \theta \|\boldsymbol{w}^{t+1} - \theta \|\boldsymbol{w}\|_2^2 + \theta \|\boldsymbol{w}^{t+1} - \theta \|\boldsymbol{w}\|_2^2 + \theta \|\boldsymbol{w}\|_2^2 + \theta \|\boldsymbol{w}\|_2^2 + \theta \|\boldsymbol{w}\|_2^2 + \theta \|\boldsymbol{$ inequality (a): $\therefore \lambda$ increases monotonically. $\therefore \lambda^{t+1} \ge \lambda^t$ and $v_i^t \ge 0$ ∴ Line 7 in Algorithm 1 $\sum_{i=1}^{n} v_i^{t+1} \mathcal{L}\big(y_i, f(\boldsymbol{x}_i, \boldsymbol{w}^{t+1})\big) - \lambda^t \sum_{i=1}^{n} v_i^{t+1} \leq \sum_{i=1}^{n} v_i^t \mathcal{L}\big(y_i, f(\boldsymbol{x}_i, \boldsymbol{w}^{t+1})\big) - \lambda^t \sum_{i=1}^{n} v_i^t$ $i = k+1 \qquad i =$:: Line 5 in Algorithm 1 $\cdot \cdot \mathcal{J}(\boldsymbol{w}^{t+1}, \boldsymbol{v}^{t+1}; \lambda^{t+1}) \leq \sum_{i=1}^{n} \mathcal{L}(y_i, f(\boldsymbol{x}_i, \boldsymbol{w}^t)) + \sum_{i=1}^{n} v_i^t \mathcal{L}(y_i, f(\boldsymbol{x}_i, \boldsymbol{w}^t)) + \|\boldsymbol{w}^t\|_2^2 + \theta \|\boldsymbol{w}^t - \tilde{\boldsymbol{w}}\|_2^2 - \lambda^t \sum_{i=1}^{n} v_i^t = \mathcal{J}(\boldsymbol{w}^t, \boldsymbol{v}^t; \lambda^t)$ (2) \mathcal{J} is monotonically decreased and it has a lower bound. $\|\mathcal{J}^{t+1} - \mathcal{J}^t\|_2 < \varepsilon \text{ for } \forall \varepsilon > 0$

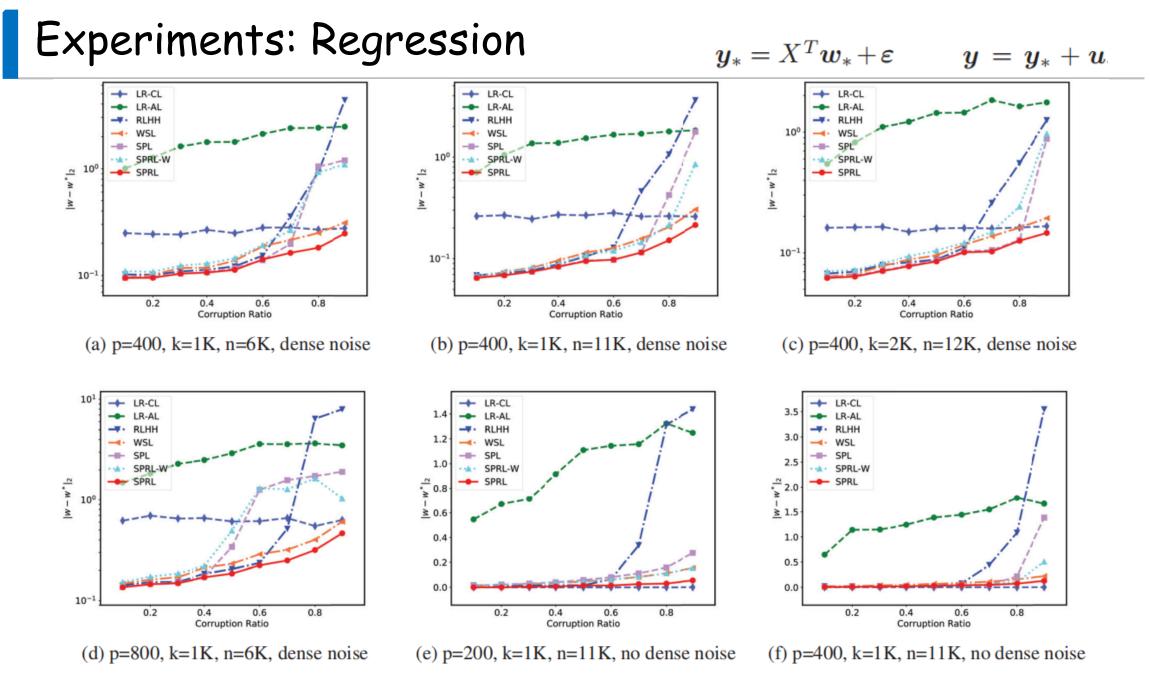


Figure 1: Performance on Regression Coefficient Recovery for Different Corruption Ratios in Uniform Distribution.

Table 2: Mean Absolute Error of Blog Feedback Prediction

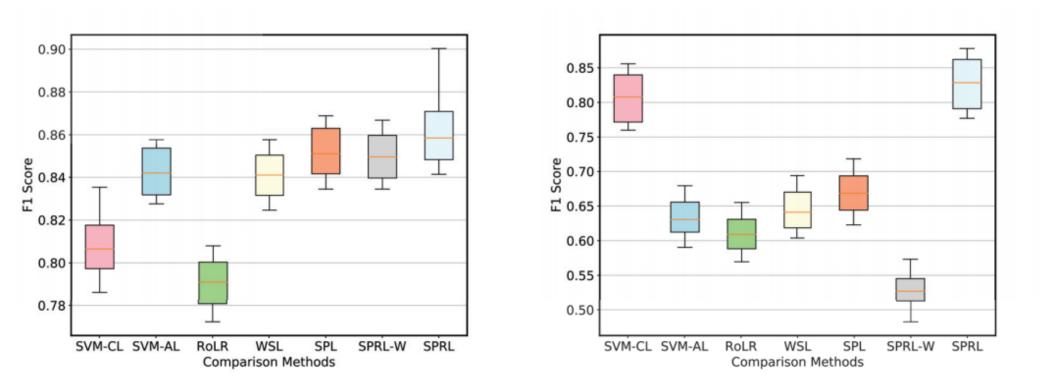
	Corruption Ratio									
	10%	30%	50%	70%	90%	Avg.				
LR-CL	1.159	1.161	1.153	1.164	1.173	1.162				
LR-AL	7.254	17.116	10.459	17.226	8.334	12.0778				
WSL	0.981	1.280	2.562	2.154	1.375	1.6704				
SPL	0.973	1.189	3.666	4.382	4.525	2.947				
SPRL-W	0.919	2.627	2.493	4.547	5.797	3.2766				
SPRL	0.971	1.107	1.036	1.053	1.046	1.0426				

Experiments: Binary Classification

Table 3: Performance on Binary Classification (F1, Precision, Recall)

	1	feature=200, clean s	et=100, noisy set=5K	ζ.	feature=400, clean set=100, noisy set=5K				
	10%	20%	30%	40%	10%	20%	30%	40%	
SVM-CL	0.657,0.656,0.659	0.654,0.650,0.658	0.676,0.667,0.686	0.674,0.688,0.661	0.628,0.629,0.628	0.639,0.640,0.638	0.626,0.621,0.630	0.620,0.627,0.613	
SVM-AL	0.928,0.927,0.929	0.900,0.902,0.898	0.835, 0.831, 0.838	0.750, 0.754, 0.747	0.918,0.916,0.920	0.860, 0.861, 0.859	0.786,0.796,0.776	0.665, 0.670, 0.661	
RoLR	0.814,0.817,0.810	0.842,0.840,0.845	0.804, 0.795, 0.814	0.724, 0.730, 0.719	0.827, 0.834, 0.820	0.788,0.790,0.785	0.747, 0.758, 0.736	0.650, 0.659, 0.641	
WSL	0.886,0.889,0.883	0.791,0.792,0.789	0.745, 0.739, 0.752	0.706,0.715,0.697	0.870,0.873,0.868	0.786,0.789,0.783	0.690,0.690,0.690	0.644,0.653,0.635	
SPL	0.946,0.946,0.946	0.903,0.905,0.902	0.809, 0.805, 0.813	0.665, 0.666, 0.665	0.916,0.921,0.912	0.824, 0.822, 0.826	0.739,0.744,0.735	0.608, 0.614, 0.602	
SPRL-W	0.944,0.942,0.946	0.913,0.916,0.910	0.799,0.796,0.802	0.694,0.699,0.689	0.905,0.903,0.906	0.811,0.815,0.808	0.754,0.760,0.749	0.637,0.647,0.628	
SPRL	0.968,0.965,0.971	0.922,0.918,0.928	0.871, 0.874, 0.866	0.751 ,0.742, 0.754	0.935,0.936,0.932	0.864, 0.863, 0.865	0.780,0.785, 0.783	0.681,0.691,0.674	
	i	feature=200, clean s	et=200, noisy set=5K	ζ.	feature=200, clean set=200, noisy set=10K				
	10%	20%	30%	40%	10%	20%	30%	40%	
SVM-CL	0.758,0.756,0.759	0.722,0.720,0.725	0.734,0.730,0.739	0.734,0.738,0.730	0.715,0.718,0.712	0.730,0.734,0.726	0.732,0.728,0.736	0.701,0.697,0.705	
SVM-AL	0.942,0.939,0.944	0.897,0.891,0.904	0.853, 0.846, 0.861	0.749,0.743,0.756	0.948,0.946,0.950	0.932,0.934,0.930	0.898, 0.899, 0.897	0.787,0.790,0.784	
RoLR	0.833,0.833,0.834	0.834,0.834,0.834	0.808, 0.806, 0.811	0.699,0.693,0.705	0.879, 0.877, 0.882	0.886,0.884,0.888	0.665, 0.668, 0.662	0.771,0.770,0.771	
WSL	0.905,0.899,0.911	0.827, 0.825, 0.829	0.796, 0.794, 0.798	0.743, 0.747, 0.740	0.902,0.900,0.904	0.856, 0.861, 0.851	0.798,0.801,0.795	0.722,0.718,0.727	
SPL	0.950,0.951,0.949	0.905,0.899,0.912	0.810,0.810,0.810	0.665, 0.665, 0.665	0.967, 0.965, 0.969	0.959,0.963,0.954	0.869, 0.875, 0.864	0.687,0.689,0.686	
SEL	0.250,0.251,0.242	0.700,0.077,0.712							
SPRL-W	0.949,0.949,0.949	0.896,0.892,0.900	0.822,0.823,0.821	0.745, 0.736, 0.755	0.966, 0.964, 0.969	0.950,0.953,0.946	0.902,0.903,0.900	0.721,0.722,0.721	

Experiments: Binary Classification



(a) Clean set=2K, Noisy set=10K, Corruption Ratio=10% (b) Clean set=2K, Noisy set=10K, Corruption Ratio=50%

Figure 2: Sentiment Classification Performance on Movie Reviews

Thanks