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I Ordinary Supervised Learning
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Input space:
represented by a single instance (feature
vector) characterizing its properties

Target space:
associated with a single label characterizing
Its semantics
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I Basic Assumption: Strong Supervision

Successful Learning needs:|supervised information|+ reqularities

Strong Supervision Assumption
O Sufficient labeling

abundant labeled training data are available

O Accurate labeling

object labeling is accurate

training error

hypothesis space ||

complexity

estimation error

approximation
error

O Explicit labeling

object labeling is unique and unambiguous

However, supervision is usually weak in practice




I Partial Label Learning (PLL)

O Each object is associated with
multiple candidate labels
O Only one candidate label is the

unknown ground-truth label

Crowdsourcing




I Partial Label Learning: Review

PLL Methods
O TIdentification-based disambiguation: treat the ground-truth label EM

as latent variable identified via iterative refining procedure

O Averaging-based disambiguation: treat all candidate labels in an
equal manner and make final prediction by averaging

O Transformation strategy: binary decomposition, dictionary

learning, graph matching, regression

However, previous works never consider the

generation process of the candidate sets



I Notations

Learning with ordinary labels

R(f) — 41;:.:(:1:,;:;) [ﬁ(f(m)wf})] Y = [k}

Learning with partial labels

P

D={(@.Y)},  YieC C={22\0\))
Cl=2%-2

ply; €Yy | @i, Y;) = 1, V(xi,y;) € X x Y, VY; € C.



I PLL: Data Generation Model

Partially labeled data distribution

1
N p— k 1y = 2 —3 — ) = 2k—1_1
ple,Y) =23 pY [y=ilplx,y=1) pY|y=1) { 0 iy

Label Sample Label ® .m

Space / 2 D Y 2 D -

Lemma 1. Given any instance x with its correct label vy, for any unknown label set Y that is uniformly
sampled from C, the equality p(y € Y | &) = 1/2 holds.



I Preliminaries: Importance Reweighting

: 0.1
How to use data B(-) € [0, 1]
from source domain? m

O
O

o

source domain

reweighted samples: Pg(s) (z) = ff;’fggffffdx




I Risk-Consistent Method

ﬁzp@=ﬂﬂ
p(Ylx) —
Y :p(y =ix) _ply = ilx)p(x) :
source target learn | —— = | p(¥,x) p(Y|x)p(x)
domain domain 2 D m -
p(¥,x) p(y =1ix)

= By | Sh W2 L(f(x),1) | = Reclf)




I Risk-Consistent Method

Risk: ch(f) — %Eﬁ(m,}/) [Zf:l ij,(f;(ﬂmﬁqm)ﬁ(f(m)ai)] {:BO, Yo}gzl

- : 5 n k P(Yo=1|Zo '
Empirical Risk: Ric(f) = 55 >0y (21:1 ij}(ffp(yl=j)|$o)£(f($o)’2))

Algorithm 1 RC Algorithm

Input: Model [, epoch T},.x, iteration I,,,x, partially labeled training set D — {(x;, Vi) Py
1: Initialize p(y;, = j | ®;) = 1,Vj € Y}, otherwise p(y; = j | ;) = 0;

2: fort = 1,2,...,Thax do

3: Shuffle D = {(x;,Y;) } 1" ¢;

4: for j =1,..., Ihax do N

5: Fetch mini-batch D; from D;

6: Update model f by ﬁm in Eq. (9);Z> M step: LlpdClTQ parameters of the model
T Update p(y; | z:) by [lq. (10)f 5= FE step: estimate the label distribution

8: end for

9: end for ply=1i|x)=g;(x)if i €Y, otherwise p(y =i | x) =0, V(x,Y) ~ p(x,Y).

Output: f.




I Classifier-Consistent Method

qj(x) =p(Y =Cj | x) Transition matrix Q We want to know:

S 1 | 1 exp(fy(x)
> q(x) = Q' g(x) p J— Ree(f) = =% leog (—zk—1—1 yevi 3, pr.(,/;,(m)))

Algorithm 2 CC Algorithm

Input: Model f, epoch T},.x, iteration I,,.., partially labeled training set D — {(x;, Vi) iy
1: fort — 1,2,...,Tax do N

2: Shuffle the partially labeled training set D = {(x;, ;) }i1;

3 for j =1,..., Ihax do_ N

4: Fetch mini-batch D; from D;

5 Update model f by minimizing the empirical risk estimator ﬁcc in Eq. (12);

6: end for

7: end for

Output: f.




I Experiments

Table 3: Test performance (mean-+tstd) of each method using linear model on UCI datasets.

Texture

Yeast

Dermatology

Har

20Newsgroups

RC
CC

99.244+0.14%
08.02+2.91%e

59.89+1.27%
59.97+1.57%

99.414+1.00%
99.734+0.85%

98.0340.09%
98.10+0.18%

75.994+0.53%
75.97+0.54%

SURE
CLPL
PLECOC
PLSVM
PLENN
IPAL

95.384+0.28%e
91.93+0.97%e
69.69+4.82%e
49.38+9.99%e
96.78+0.31%e
99.45+0.23%

54.39+1.32%e
54.584+2.11%e
37.37+£9.73%e
45.70£8.01%e
47.79+2.41%e
48.99+43.84%e

97.48+0.32%e
99.62+0.85%

87.84+5.30%e
80.00+7.53%e
80.54+5.06%e
98.65+2.27%e

97.43+0.24%e
97.484+0.18%e
96.974+0.29%e
91.64+1.43%e
94.174+0.59%e
96.554+0.40%e

69.824+0.26%e
71.444+0.55%e
15.3247.86%e
32.594+8.91%e
27.18+0.65%e
48.36+0.85%e

Table 4: Test performance (mean+tstd) of each method using linear model on real-world datasets.

Lost

MSRCv2

BirdSong

Soccer Player

Yahoo! News

RC
CC

79.43+3.26%
79.2943.19%

46.56+2.71%
47.22+3.02%

71.944+1.72%
72.22+1.71%

57.00+0.97%
56.32+0.64%

68.23+0.83%
68.14:£0.81%

SURE
CLPL
PLECOC
PLSVM
PLENN
IPAL

71.33+£3.57%e
74.87+4.30%e
19.03£8.36%e
75.31+£3.81%e
36.73£2.99%e
72.12+4.48%e

46.88+4.67%
36.53+4.59%e
41.53+3.25%e
35.85+4.41%e
41.36+2.89%e
50.80+4.46%o0

58.9241.28%e
63.56+1.40%e
71.58+1.81%
49.90+2.07%e
64.94+1.42%e
72.06+1.55%

49.41£+086%e
36.82+1.04%e
53.704£2.02%e
46.29+0.96%e
49.62+0.67%e
55.03+0.77%e

45.4941.15%e
46.21+0.90%e
66.224+1.01%e
56.8540.91%e
41.074+1.02%e
66.794+1.22%e
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