Learning Discrete Structures for Graph Neural
Networks

Luca Franceschi Mathias Niepert Massimiliano Pontil Xiao He

ICML 2019



DNN Learning:

features > |label

GNN Learning:

adjacent matrix
/ W
A > |abel

features,



A is missing or incomplete

KNN:efficacy of the resulting models hinges on the
choice of k



Bilevel programs:

a set of variables occurring in the objective function are
constrained to be an optimal solution of another optimization
problem

H € R™ wERd.

min F'(wg, #) such that wy € argmin L(w,#).
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replacing the minimization of L with the repeated application of an
iterative optimization dynamics @ such as (stochastic) gradient
descent

wr = ®(wy 1,0) =we 1 —nVL(we 1,0),t=1,2...... T

hypergradient

VoF(wer,0) = 0uF(wer,0)Vewsr + O F(wer,0)
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The original loss function of GCN is

L(ij): Z f(fw(XﬂA)Uayv)+Q(w)v . W
VE Vrrain
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Moreover, it contains both continuous and discrete-valued variables, which
prevents us from directly applying

we propose to model each edge with a Bernoulli random variable

mingcz;, Eavper(o) [F(we, A)
such that wy = arg min,, E 4. ger(g) [L(w, A)].
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Algorithm 1 LDS

1: Input data: X,Y, Y[, A]

2: Input parameters: 7, 7[, k]

3: [A « kNN(X, k)] {Init. A to kNN graph if A = 0}
4: 0+ A {Initialize Py as a deterministic distribution}
5: while Stopping condition is not met do

6: t<+0

7:  while Inner objective decreases do

8: A: ~ Ber(0) {Sample structure }
9: we,t+1 < Pt(we, ¢, At) {Optimize inner objective }
10: t+—t+1
11: ift =0 (mod 7) or 7 = 0 then
12: G + computeHG(F,Y, 0, (we.i)iei_,
13: 0 < Projz |0 —nG] {Optimize outer objective }
14: end if

15: end while
16: end while

17: return w, Py  {Best found weights and prob. distribution }




Expriments
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Figure 2. Mean accuracy + standard deviation on validation (early stopping; dashed lines) and test (solid lines) sets for edge deletion
scenarios on Cora (left) and Citeseer (center). (Right) Validation of the number of steps 7 used to compute the hypergradient (Citeseer);
7 = 0 corresponds to alternating minimization. All results are obtained from five runs with different random seeds.



Table 1. Test accuracy (=4 standard deviation) in percentage on various classification datasets. The best results and the statistical
competitive ones (by paired t-test with o = 0.05) are in bold. All experiments have been repeated with 5 different random seeds. We
compare kNN-LDS to several supervised baselines and semi-supervised learning methods. No graph is provided as input. kNN-LDS
achieves high accuracy results on most of the datasets and yields the highest gains on datasets with underlying graphs (Citeseer, Cora).

Wine Cancer Digits Citeseer Cora 20news FMA
LogReg 92.1(1.3) 93.3(0.5) 85.5(1.5) 62.2(0.0) 608 (0.0) 42.7(1.7) 37.3(0.7)
Linear SVM 93.9(1.6) 90.6 (4.5) 87.1(1.8) 58.3(0.0) 589(0.0) 40.3(1.4) 35.7(1.5)
RBF SVM 94.1 (2.9) 91.7 (3.1) 86.9 (3.2) 60.2 (0.0) 59.7(0.0) 41.0(1.1) 38.3(1.0)
RF 93.7(1.6) 92.1(1.7) 83.1(2.6) 60.7 (0.7) 58.7(0.4) 40.0(1L.1) 37.9(0.6)
FFNN 89.7(1.9) 92.9(1.2) 36.3(10.3) 56.7(1.7) 56.1(1.6) 38.6(1.4) 33.2(1.3)
LP 89.8(3.7) 76.6(0.5) 91.9 (3.1) 23.2(6.7) 37.8(0.2) 353(0.9 14.12.1)
ManiReg 90.5(0.1) 81.8(0.1) 83.9 (0.1) 67.7(1.6) 62.3(0.9) 46.6(1.5) 34.2(1.1)
SemiEmb 91.9(0.1) 89.7(0.1) 90.9 (0.1) 68.1(0.1) 63.1(0.1) 469 0.1) 34.1(1.9)
Sparse-GCN 63.5(6.6) 72.5(2.9) 13.4 (1.5) 33.1(0.9) 306(2.1) 247(1.2) 234(1.4)
Dense-GCN 90.6(2.8) 905(27) 356(21.8) 58.4(1.1) 59.1(0.6) 40.1(1.5) 34.5(0.9)
RBF-GCN 90.6 (2.3) 92.6 (2.2) 70.8 (5.5) 58.1(1.2) 57.1(1.9) 393(1.4) 33.7(1.4)
ENN-GCN 93.2(3.1) 93.8(1.4) 91.3 (0.5) 68.3(1.3) 66.5(0.4) 41.3(0.6) 37.8(0.9
EKNN-LDS (dense) 97.5(1.2) 94.9(0.5) 92.1 (0.7) 70.9 (1.3) 709 (1.1) 45.6(2.2) 38.6(0.6)
ENN-LDS 97.3(0.4) 94.4(1.9) 92.5(0.7) 71.5(1.1) 71.5(0.8) 46.4(1.6) 39.7(1.49)
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Figure 3. Mean edge probabilities to nodes aggregated w.r.t. four groups during LDS optimization, in log,o scale for three example nodes.
For each example node, all other nodes are grouped by the following criteria: (a) adjacent in the ground truth graph; (b) same class
membership; (c) different class membership; and (d) unknown class membership. Probabilities are computed with LDS (7 = 5) on Cora
with 25% retained edges. From left to right, the example nodes belong to the training, validation, and test set, respectively. The vertical
gray lines indicate when the inner optimization dynamics restarts, that is, when the weights of the GCN are reinitialized.



