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I Introduction

The class distributions of real-world classification datasets are usually imbalanced because many
applications, such as network intrusion detection, tumor classification, financial risk identification, etc.
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Two difficulties that we may face are:

imbalanced class distributions selecting proper training samples
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Imbalanced learning active learning



I Introduction

—— data-resampling

( oversampling. undersampling...)

Class imbalance problem —<

—— algorithm-level methods

( the cost-sensitive learning algorithms)
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(Synthetic Minority Oversampling Technique)
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% randomly select a minority point and find its kNN point in the minority. Then randomly mark a
point from kNN.

% Randomly select a point on the line between a and b as the newly synthesized minority sample



I Introduction

Contributions:
A novel cost-sensitive active learning framework that combines uncertainty and diversity
measures for sample selection is proposed for imbalanced learning.

A novel algorithm that measures the diversity of examples is proposed, where the K-means
clustering is firstly used to scatter examples.

A set of experiments are conducted on several class-imbalanced datasets to confirm the
advantages of the proposed method over some state-of-the-art methods.



| Method

1. Uncertainty Measure

the labeled dataset is L= {xq, X5, .. ., X}

the unlabeled dataset 1s U ={Xy 411, Xy 424es Xnam |

_ (1L Flx) <6 unc; = |F(x:,) — 6
=TT Fe) > 6 = 1F () - 0]

(the model function)

Smaller distance means that the prediction result on is more uncertain.



| Method

2. Diversity Measure

(1) D = {d]_, dz, . a ag dt}gﬂ

k-means _ _
L=4L,1, ...} k center points  (Cj)

2) Da = _?=1‘|fj - dHE

(3) choose samples in whose distance is far from all center points to make our selected samples diverse.
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The distance Dy is the sum of the distance of s,d, s.d, and s3d.



Algorithm Imbalanced Active Learning (IAL)

Input: labeled dataset £, Unlabeled data pool U, parameters
mand m,

Output: Classifier F
1. Initialize k of k-means cluster algorithm, t,n
2. REPEAT // In each iteration j

2.1 Calculate the class weight w, = — and wy = =
T m
Classifier F; «Train (w, , wy, L)

Obtain the center points {c;} of £ using k-means cluster

algorithm
2.2 Calculate the uncertainty of instances by Eq. (2) unc; = |F(x;) — 6|
Get the most t uncertain samples (D)
FOR d inD DO
Calculate the diversity of instances by Eq. (3) Dg = Jlf:1||fj - d”2

Get the most n diverse samples in D.

2.3 Query the labels of the n samples, add the labeled n
samples to the labeled dataset £, update U.

UNTIL the performance of F is satisfied.
3. RETURN F




I Experiments: Dataset

Table 1. Characteristics of the six datasets

dataset size | #attribs | #major/#minor | ratio
Yeast] 1484 8 1055/429 2.46
Vehicle2 846 18 628/218 2.88
Ecolil 336 7 259/77 3.36
Segment0 | 2308 19 1979/329 6.02
Page-block() | 5472 10 4913/559 8.79
Abalone9-18 | 731 8 689/42 16.4




I Experiments: Evaluation Metrics

Table 2. Confusion matrix

Predict Positive Predict Negative
True Positive TP FN
True Negative FP TN
Specificity:
e .. TN
Specificity = TNIFP (4)
Precision:
. . TP
Precision = —— (5)
Recall:
Recall = —— (6)

TP+EN

F measure: suggested in [18], which mixes recall and
precision as an average:

2xRecallxPrecision
F_measure|= — (7)
Recall+Precision

G _mean: When the performance of both classes i1s concerned,
both specificity and recall are expected to be high in the meantime.
It defined as :

G_mean |= ,/Specificity X Recall (8)




Experiments: Results
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