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' Supervised Learning Workflow S|P
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0 The groundtruth of each training image is unique and should be available in training phase.

0 Unfortunately, the images may lack clear labels and manually labeling them will incur
unaffordable monetary or time cost.



§ Partial Label Learning )

Newsletter Crowdsourcing

» | Lionel Messi?

! E (, Luis Suarez?

¢ Wl |
| oags *

~

sg U ™

o3l Lionel Messi?
g )
B ‘ Luis Suarez?
, 2ol

2

N .
Kute'| |
) Ry ~ = Rakuten

Barcelona news: Lionel Messi and Luis Suarez Annotator 1: Horse  Annotator 2: Donkey
hold private talks over five player concerns Annotator 3: Mule

1 Generally, it is a multiple classification problem.

[0 The images are associated with multiple candidate labels, and only one of them is valid
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' Formal Definition Sl
O Input space: X € R% is d-dimensional.

O Output space: YV = {1,2,...,c}includes c classes.

O Training set: D = {(x;,5;)|1 < i < n} has n ambiguously labeled examples.

False positive labels

O Candidate label set: S; = |A;|U{y:}

Groundtruth label

[ Target: train a classifier J X =Y fromthe training set D so that the correct
predictions can be made on test examples.
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1 To solve this problem, the common strategy is to disambiguate the set of candidates of
each example.

0 However, existing methods are usually short of representation ability and discrimination

ability.
Representation ability Discrimination ability
Shallow learning Imperfect disambiguation
Reasons :
frameworks techniques.

Employ entropy minimization
regularizer and temporal
ensembling technique

Employ deep convolutional

Contributions
neural network
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Loss function: S
Discrimination term

Loss :[Ef (Y, Y_)] —l—[ozﬁd(?)]+ T(t) '[ﬁt (Y, Y_)]

Fidelity term Temporal Ensembling Term
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The predicted probability of the labels in non-candidate label set should be zero.

. 1 — ,\
Li(Y,Y)= - Z(l —vy;) ' log(1—y¥;)
i=1

> Label matrix: Y = [yl, e ,yn] - {()’ 1}”><C
 vij = l:ifthe j-th label is a candidate label of the image X;

* Vij = 0: otherwise
> Predicted matrix: Y = V1,...,¥n] €[0,1]""€
e Vij: the probability of the image X; belongs to the j-th class

° }Afij > (0 and Z?:l )A/'@'j =1




' Discrimination Term

Minimizing entropy makes the potential groundtruth label become prominent among all labels.
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' Temporal Ensembling Term nnnnnnnnn it s

Assemble the model predictions of different epochs and regard them as the auxiliary
supervision information for the next epoch.

_ . ] — .
Lo(Y,Y) =~ ;’w 'y, logy;
S() = 48t—1) 4 (1 — )Y ®)  Assembled predictions at t-th epoch

— S(t)/(l _ f)/t) Training target of (t+1)-th epoch

. — JU m; < 0 m; = max Yy,; — Max Y,
m;* otherwise Yj &
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» T(t) is a time-dependent weighting function.

» Roughly speaking, T (t) increases with the number of epochs.
_ 2
T(t) = Tmax exXp [_5(1 o t) ]

» T..., denotes the maximum value that T(t) could reach.

» tincreases linearly from zero to one during the rising phase.

» At the initial training phase, the network mainly learns from the original
ambiguous labels.

» Then it gradually learns from the assembled predictions when then training
process proceeds




' Datasets

» Synthesized datasets:

e Fashion MNIST

> Real-world datasets:

* Yahoo!News

* SVHN * Lost
Datasets # Images | # Classes | Avg # labels
FM-v1 70,000 10 2
FM-v3 70,000 10 4
SVHN-v1 99,289 10 2
SVHN-v3 99,289 10 4
Lost 1,122 16 2.23
Yahoo!News 14,322 38 1.44

Characteristics of the adopted datasets.
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' Experiments on Synthesized Datasets
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FM-v1

FM-v3

SVHN-v1

SVHN-v3

RegISL
SURE
WMCar-ICE
MCar
PLKNN
M3PL
IPAL
DCNN
D?CNN

0.913 £0.003
0.897 £ 0.004 o
0.884 £ 0.002
0.912 £0.005
0.902 £ 0.007
0.936 + 0.002

0.825 £ 0.002 o
0.848 = 0.004
0.874 = 0.004
0.905 £ 0.003 o
0.890 = 0.008
0.927 4 0.003

0.796 £ 0.004
0.736 £ 0.003
0.827 £ 0.002
0.798 £0.003
0.922 £ 0.003
0.937 + 0.003

0.545 £ 0.004
0.636 + 0.002 o
0.788 == 0.003 o
0.777 £ 0.001 o
0.908 = 0.007 o
0.929 + 0.001

D?CNN achieves superior performance against other baselines on these synthesized

datasets.

The performances of all baselines decrease, when the number of the candidate labels

increase.




' Experiments on Real-world Datasets

Lost

Yahoo!News

RegISL
SURE
WMCar-ICE
MCar
PLKNN
M3PL
IPAL
DCNN
D?CNN

0.761 £ 0.037 e
0.794 £ 0.037 e
0.795 4+ 0.020 e
0.743 £0.011 e
0.651 £ 0.012 e
0.678 +-0.032 o
0.790 £ 0.034 o
0.580 £ 0.031 e
0.838 + 0.014

0.598 £ 0.016 o
0.729 £ 0.010 o
0.705 = 0.010 o
0.671 £0.010 o
0.562 £ 0.017 o
0.613 +0.001 o
0.647 = 0.017 o
0.740 4= 0.006 e
0.833 + 0.009

e The accuracy of D*CNN is higher than the second best method on Lost dataset by

approximately 4%.

* On Yahho!News dataset, D°CNN significantly outperforms other baselines and leads

the second best method with the margin of 9.3%.
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The robustness to proportion of ambiguously-labeled images
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The effectiveness of L; and L, The effectiveness of varied T (1)
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