

Active Generative Adversarial Network for Image Classification

Quan Kong,*† Bin Tong,*† Martin Klinkigt,† Yuki Watanabe,‡ Naoto Akira,† Tomokazu Murakami†

†Hitachi, Ltd. R&D Group, Japan

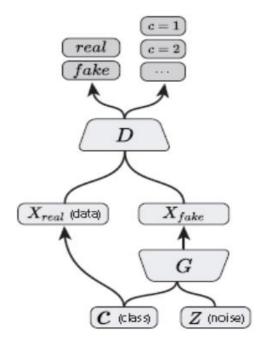
[†]Hitachi America, Ltd. USA

{quan.kong.xz, bin.tong.hh, martin.klinkigt.ut}@hitachi.com
{naoto.akira.vu, tomokazu.murakami.xr}@hitachi.com
yuki.watanabe@hal.hitachi.com

AAAI 2019

Background

AC-GAN (Auxiliary Classifier GAN)



AC-GAN (Present Work)

$$\begin{split} L_{\text{AC-GAN}}^D &= \mathbb{E}[\log P(\text{real}|\mathbf{x}_i)] + \mathbb{E}[\log P(\text{fake}|\widehat{\mathbf{x}}_i)] + \\ &\mathbb{E}[\log P(y_i|\mathbf{x}_i)] + \mathbb{E}[\log P(y_i|\widehat{\mathbf{x}}_i)] \end{split}$$

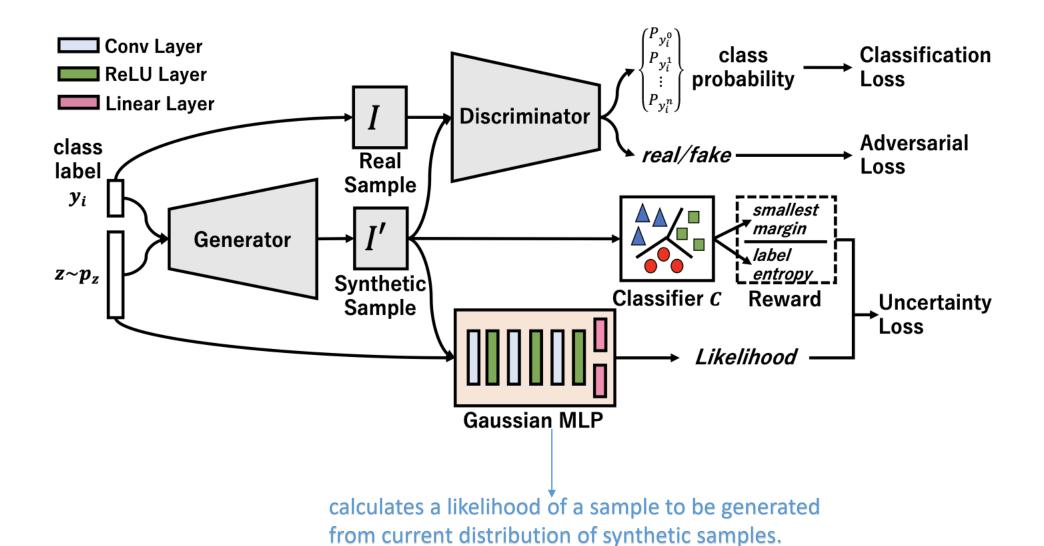
$$L_{\text{AC-GAN}}^G = \mathbb{E}[\log P(\text{real}|\widehat{\mathbf{x}}_i)] + \mathbb{E}[\log P(y_i|\widehat{\mathbf{x}}_i)].$$

generating labeled samples

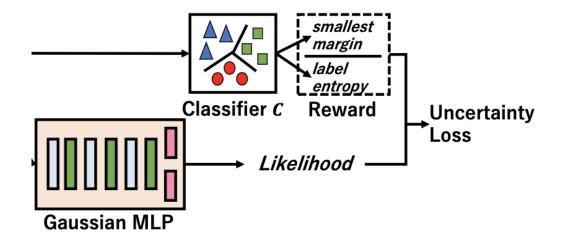
However, for a class of samples, most generated samples may fall **less informative**.

In the idea of active learning, a classifier trained with existing labeled data provides a signal to determine if a sample is informative.

ActiveGAN



ActiveGAN



smallest margin: $u_m = P(y_1'|\widehat{x_i}) - P(y_2'|\widehat{x_i})$ label entropy: $\underline{u_{le}} = -\sum_{y'} P(y'|\widehat{x_i}) \log P(y'|\widehat{x_i})$

$$\mathbf{r}_m(\widehat{\mathbf{x}}_i) = \begin{cases} e^{-u_m}, & \text{if } u_m \leq \epsilon \\ C, & \text{otherwise} \end{cases}$$

$$\mathbf{r}_{le}(\widehat{\mathbf{x}}_i) = \begin{cases} e^{u_{le}}, & \text{if } u_{le} \ge \epsilon \\ C, & \text{otherwise} \end{cases}$$

$$\mathbf{r}(\widehat{\mathbf{x}}_i) = \alpha \cdot \mathbf{r}_m(\widehat{\mathbf{x}}_i) + (1 - \alpha) \cdot \mathbf{r}_{le}(\widehat{\mathbf{x}}_i),$$

$$L_{ ext{uncertainty}} = \sum_{\widehat{\mathbf{x}}_i} \mathbf{r}(\widehat{\mathbf{x}}_i) P(\widehat{\mathbf{x}}_i | \theta),$$

Loss function of Active GAN:

$$\begin{split} L_{\text{ActiveGAN}}^G &= L_{\text{AC-GAN}}^G + \lambda L_{\text{uncertainty}} \\ &= \mathbb{E}[\log P(\text{real}|\widehat{\mathbf{x}}_i)] + \mathbb{E}[\log P(y|\widehat{\mathbf{x}}_i)] \\ &+ \lambda \mathbb{E}[P(\widehat{\mathbf{x}}_i|\theta)\mathbf{r}(\widehat{\mathbf{x}}_i)], \end{split}$$

$$\begin{split} L_{\text{ActiveGAN}}^D &= L_{\text{AC-GAN}}^D \\ &= \mathbb{E}[\log P(\text{real}|\mathbf{x}_i)] + \mathbb{E}[\log P(\text{fake}|\widehat{\mathbf{x}}_i)] + \\ &\quad \mathbb{E}[\log P(y_i|\mathbf{x}_i)] + \mathbb{E}[\log P(y_i|\widehat{\mathbf{x}}_i)] \end{split}$$

ActiveGAN

Algorithm 1 ActiveGAN

Input training data \mathbf{x}_i and its label y_i where $i \in$ $[1,\ldots,N]$.

Output Ψ_d (parameters of D), Ψ_g (parameters of G) and θ (parameters of MLP)

- 1: Initialize α , λ , θ , Ψ_d and Ψ_g .
- 2: Set the buffer size to be M
- 3: Train SVM with grid-search for best parameters
- 4: Train the generator G and the discriminator D with first m iterations
- 5: Save generated samples in m iterations into the buffer
- 6: repeat
- Generate a sample $\widehat{\mathbf{x}}_i \leftarrow G(z, y_i)$ 7:
- Use Equation 9 to calculate the reward $\mathbf{r}(\widehat{\mathbf{x}}_i)$ for $\widehat{\mathbf{x}}_i$. 8:
- Use generated samples to calculate the likelihood 9: $P(\widehat{\mathbf{x}}_i|\theta)$ for $\widehat{\mathbf{x}}_i$
- Use Equation 10 to calculate the loss L_U related to 10: the degree of uncertainty for $\widehat{\mathbf{x}}_i$
- Update parameters for the generator G and MLP: $\Psi_g, \theta \leftarrow (\Psi_g, \theta) + \nabla_{\Psi_g, \theta} L_{\text{ActiveGAN}}^G(\Psi_g, \theta)$ Update parameters for the discriminator D: $\Psi_d \leftarrow \Psi_d$ 11:
- 12: $+ \nabla_{\Psi_d} L_{\text{AC-GAN}}^D$
- Update the buffer by adding the sample $\hat{\mathbf{x}}_i$ 13:
- 14: **until**

Experiment

Table 1: F-score of models on CIFAR-10, MNIST, Fashion-MNIST (F-MNIST) and Tiny-ImageNet. n represents the number of labeled images used for training.

	CIFAR-10		MNIST		F-MNIST		Tiny-ImageNet	
Method	n=5k	n=10k	n=500	n=1k	<i>n</i> =5k	n=10k	<i>n</i> =10k	n=20k
Baseline(SVM)	83.4	85.3	94.6	96.2	87.1	88.1	56.1	58.3
AC-GAN	81.4	82.7	94.1	95.8	85.4	86.4	52.2	56.1
AC-GAN+F	82.5	83.2	94.5	95.9	86.2	87.3	53.2	56.9
ActiveGAN	84.3	86.3	95.1	96.5	87.6	89.0	57.5	59.4

Experiment

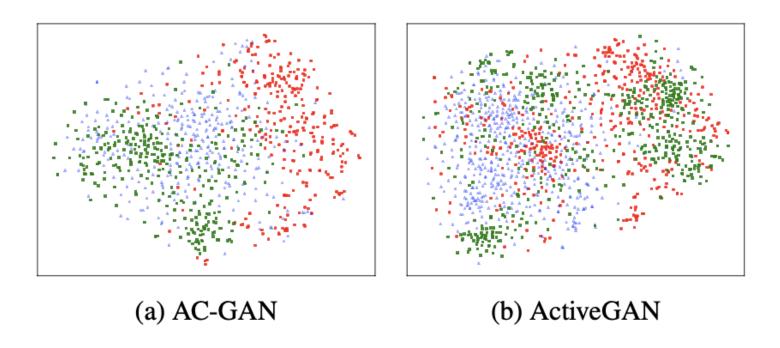


Figure 4: This is t-SNE visualization of the generated samples from AC-GAN (a) and ActivGAN (b) on CIFAR-10,

green points: generated samples

blue points: training samples randomly sampled from each class

red points: real hard samples selected from test pool by using smallest margin

Experiment

Figure 5: Samples of generated images from ActiveGAN in the dataset CIFAR-10. Each column shares the same label and each row shares the same latent variables.

Thanks