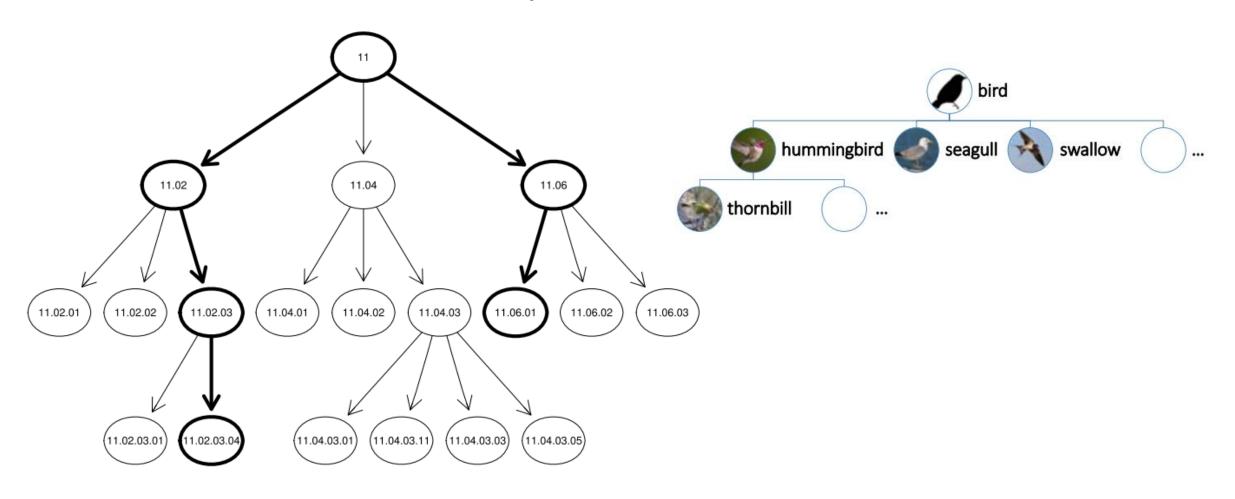
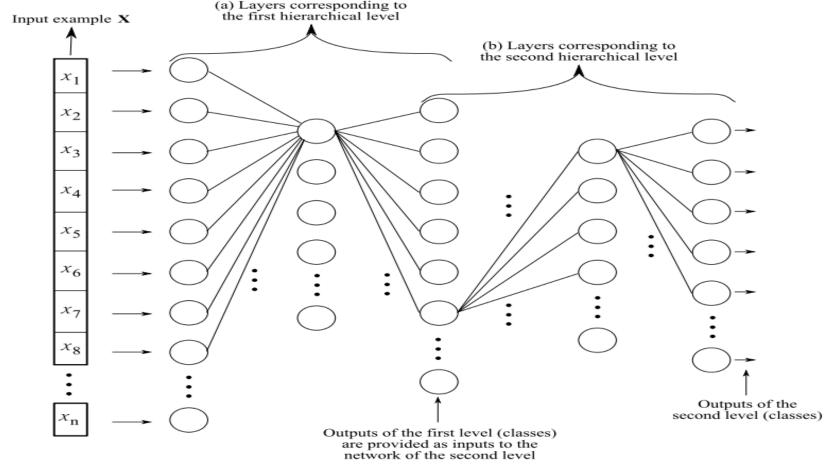
Hierarchical Multi-Label Classification Networks

Jônatas Wehrmann

Ricardo Cerri


Rodrigo C. Barros

Contents


Intrudcution HMCN-F HMCN-R Expriments

Intruction

a niche of tasks in which classes are not disjoint but organized into a hierarchical structure, namely hierarchical classification (HC)

Local way:each classifier is responsible for the prediction of particular hierarchical levels.

Global way: a single classifier capable of associating objects with their corresponding classes in the hierarchy as a whole

HMCN-F

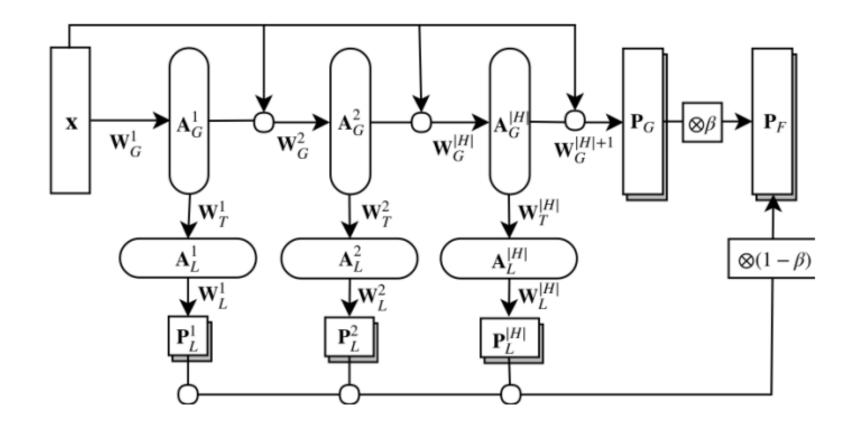


Figure 1. HMCN-F architecture.

$$\mathbf{A}_G^1 = \phi(\mathbf{W}_G^1 \mathbf{x} + \mathbf{b_G^1})$$

reusing original features

Middle level:

$$\mathbf{A}_G^h = \phi(\mathbf{W}_G^h(\mathbf{A}_G^{h-1} \odot \mathbf{x}) + \mathbf{b}_G^h)$$

Global Output: $\mathbf{P}_G = \sigma(\mathbf{W}_G^{|H|+1} \mathbf{A}_G^{|H|} + \mathbf{b}_G^{|H|+1})$

$$\mathbf{A}_G^1 = \phi(\mathbf{W}_G^1 \mathbf{x} + \mathbf{b_G^1})$$

$$\mathbf{A}_L^h = \phi(\mathbf{W}_T^h \mathbf{A}_G^h + \mathbf{b}_T^h)$$

$$\mathbf{P}_L^h = \sigma(\mathbf{W}_L^h \mathbf{A}_L^h + \mathbf{b}_L^h)$$

The final prediction:

$$\mathbf{P}_F = \beta \left(\mathbf{P}_L^1 \odot \mathbf{P}_L^2 \odot, \dots, \mathbf{P}_L^{|H|} \right) + (1 - \beta) \mathbf{P}_G$$

HMCN-R

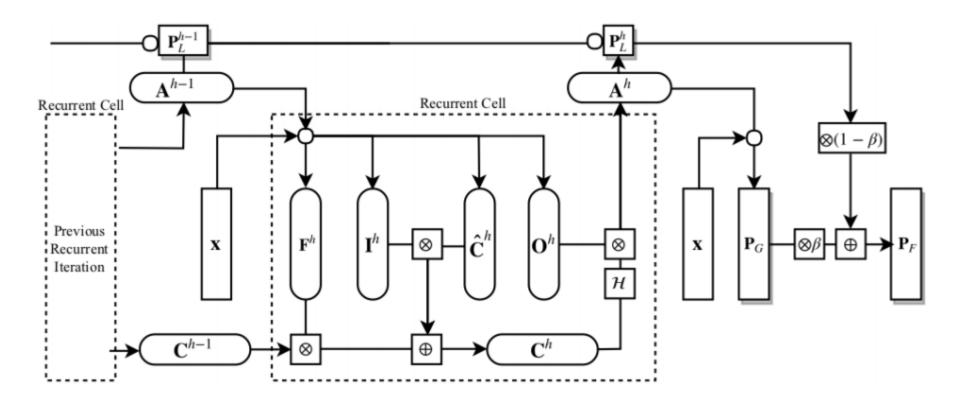


Figure 2. HMCN-R architecture.

$$\mathbf{F}^{h} = \sigma \left(\mathbf{W}_{F} (\mathbf{A}^{h-1} \odot \mathbf{x}) + \mathbf{b}_{F} \right)$$

$$\mathbf{I}^{h} = \sigma \left(\mathbf{W}_{I} (\mathbf{A}^{h-1} \odot \mathbf{x}) + \mathbf{b}_{I} \right)$$

$$\mathbf{\hat{C}}^{h} = \mathcal{H} \left(\mathbf{W}_{C} (\mathbf{A}^{h-1} \odot \mathbf{x}) + \mathbf{b}_{C} \right)$$

$$\mathbf{C}^{h} = \mathbf{F}^{h} \mathbf{C}^{h-1} + \mathbf{I}^{h} \mathbf{\hat{C}}^{h}$$

$$\mathbf{O}^{h} = \sigma \left(\mathbf{W}_{O}(\mathbf{A}^{h-1} \odot \mathbf{x}) + \mathbf{b}_{O} \right)$$
$$\mathbf{A}^{h} = \mathbf{O}^{h} \mathcal{H}(\mathbf{C}^{h})$$

Loss Function

$$egin{aligned} \mathcal{L}_L &= \sum_{h=1}^{|H|} \left[\mathcal{E}(\mathbf{P}_L^h, \mathbf{Y}_L^h)
ight] \ \mathcal{L}_G &= \mathcal{E}(\mathbf{P}_G, \mathbf{Y}_G) \end{aligned}$$

$$\mathcal{E}(\hat{\mathbf{Y}}, \mathbf{Y}) : -\frac{1}{N} \sum_{i=1}^{N} \sum_{j=1}^{|C|} \left[\mathbf{Y}_{ij} \times \log(\hat{\mathbf{Y}}_{ij}) + (1 - \mathbf{Y}_{ij}) \times \log(1 - \hat{\mathbf{Y}}_{ij}) \right]$$

$$\mathcal{L}_{H_i} = \lambda \max\{0, \mathbf{Y}_{in} - \mathbf{Y}_{ip}\}^2$$

child node's score

parent node's score

$$\min_{W} \left(\mathcal{L}_L + \mathcal{L}_G + L_H \right)$$

Expriments

Table 2. Impact of input reuse and local outputs on the performance of HMCN-F. The values presented are of $AU(\overline{PRC})$ regarding Funcat validation data. Average ranking is also provided (lower is better).

DATASET	HMCN (GLOBAL ONLY)	HMCN-F (INPUT REUSE)	HMCN-F (LOCAL OUTPUTS)	HMCN-F
CELLCYCLE	0.200	0.212	0.216	0.228
DERISI	0.164	0.166	0.173	0.168
EISEN	0.253	0.263	0.266	0.280
EXPR	0.220	0.242	0.238	0.271
GASH1	0.217	0.243	0.241	0.261
GASH2	0.210	0.215	0.211	0.227
SEQ	0.109	0.258	0.236	0.279
SPO	0.158	0.167	0.174	0.170
AVERAGE RANKING	5.25	3.38	3.00	1.25

Table 3. Impact of Hierarchical Violations in HMCN. Values presented are of $AU(\overline{PRC})$ on Validation data.

		HMCN-F		НМС	MCN-R
DATASET	$\lambda = 0.0$	$\lambda = 0.1$	$\lambda = 1.0$	$\lambda = 0.0$	$\lambda = 0.1$
CELLCYCLE	0.250	0.252	0.233	0.245	0.249
DERISI	0.191	0.193	0.185	0.188	0.189
EISEN	0.293	0.298	0.264	0.292	0.298
EXPR	0.296	0.301	0.263	0.295	0.300
GASCH1	0.281	0.284	0.259	0.278	0.283
GASCH2	0.252	0.254	0.232	0.244	0.249
SEP	0.283	0.291	0.262	0.285	0.290
SPO	0.210	0.211	0.197	0.205	0.207

Table 4. Comparison of HMCN with the baseline methods. The values presented are of $AU(\overline{PRC})$. Values in bold outperform the best results published so far, and underlined are the novel state-of-the-art for each dataset.

DATASET	HMCN-F	HMCN-R	CLUS-HMC	CSSA	CLUS-ENS	HMC-LMLP
CELLCYCLE (FUNCAT)	0.252	0.247	0.172	0.188	0.227	0.207
DERISI (FUNCAT)	0.193	0.189	0.175	0.186	0.188	0.183
EISEN (FUNCAT)	0.298	0.298	0.204	0.212	0.271	0.245
EXPR (FUNCAT)	0.301	0.300	0.210	0.220	0.271	0.243
GASCH1 (FUNCAT)	<u>0.284</u>	0.283	0.205	0.208	0.267	0.236
GASCH2 (FUNCAT)	0.254	0.249	0.195	0.210	0.227	0.211
SEQ (FUNCAT)	0.291	0.290	0.211	0.218	0.284	0.236
SPO (FUNCAT)	0.211	0.210	0.186	0.208	0.210	0.186
CELLCYCLE (GO)	0.400	0.395	0.357	0.366	0.387	-
DERISI (GO)	0.369	0.368	0.355	0.357	0.363	-
EISEN (GO)	<u>0.440</u>	0.435	0.380	0.401	0.433	-
EXPR (GO)	0.452	0.450	0.368	0.384	0.418	-
GASCH1 (GO)	0.428	0.416	0.371	0.383	0.415	-
GASCH2 (GO)	0.465	0.463	0.369	0.373	0.395	-
SEQ (GO)	0.447	0.443	0.386	0.387	0.435	-
SPO (GO)	0.376	0.375	0.345	0.352	0.372	-
DIATOMS	0.530	0.514	0.167	-	0.379	-
ENRON	0.724	0.710	0.638	-	0.681	-
IMCLEF07A	$\overline{0.950}$	0.904	0.574	-	0.777	-
IMCLEF07D	$\overline{0.920}$	0.897	0.749	-	0.863	-
REUTERS	$\overline{0.649}$	0.610	0.562	-	<u>0.703</u>	-
AVERAGE RANKING	1.07	2.04	5.12	3.96	3.57	-