\@),\\E\wwﬁ’
Wi
s SN ”///////f*
= =
‘e% Toso N\
4;”’////‘14Hl\'l.\\\\\\\‘?5
UuA

Uncertainty in Deep Learning

Yarin Gal

2018.7.29

Uncertainty Estimation
in Deep Learning

A brief introduction

\ Christian S. Perone
christian. perone@gma il.com
http://blog.christianperone.com

Different Uncertainties

Two main types of uncertainty, often confused by practitioners, but very different quantities:

Aleatoric uncertainty

Information data cannot explain, also called data uncertainty, or irreducible uncertainty. More data
might not reduce it;
EX: increasing measurement precision can reduce it.

Epistemic uncertainty

Uncertainty in the model itself, also called model uncertainty, or reducible uncertainty;
Ex: can be explained away by increasing training size

Importance of Uncertainty

Autonomous vehicles (what’s the uncertainty this object is a tree ?);

Active Learning (which sample should be labeled ?);

Explore/exploit dilemma in reinforcement learning;

#* ¥ K ¥

Model understanding/dataset understanding;

A simple frequentist regression

In a frequentist linear regression, we have a point estimate for the parameters of our
model.

First, we define our model:

Vectorial notation

f(x) =00+ 6121+ 00+ ...= xT3

Later, we denote a loss such as the MSE (mean squared error):

L= %Z(f(xi) —y;)®
=

Finally, we optimize it:

) = arg 1116;111 L(f(x)y)

Frequentist regression

4.0 * sample data
= regression line
3.5

3.0
2.5
2.0

1.5

1.0

0.5

0.0

0.0 0.2 0.4 0.6 0.8 1.0

X = {x1,-xnt Y = Ay, yn} y = f(z)

Since W is not deterministic, the output of neural network is also a random variable. Prediction for a new
input X can be formed by integrating with respect to the posterior distribution of W as follows:

Pyl X, Y) = / Dyl Wp(W[X.Y) dW

Bayesian approaches represent the uncertainty using a distribution over parameters. Instead of
a point estimate, we have an entire posterior.

* To formulate our bayesian regression, we first Prior i
select a likelihood 7
1 2 3
* After that, we select priors over parameters;
. . Data %‘
* Then we compute or approximate (sampling) the 5
posterior of our model and data. T 2 3
Posterior Prior Posterior :
p(O1X) o p(X|6) () (AVAV

Likelihood

Bayesian regression

We will use a simple Gaussian distribution for our
observations, defined as:

Y ~ N(p, 0%)

We plug our regression of the p:

Y ~N(a+ Bz, 0%
N——

Linear model
And define the priors:

a ~ N(0,20)
B ~ N(0,20)
o~ U(0,5)

prior likelihood posterior
N N
/o [\
;.") ,-"II |
/ /
;.-fl ;x"
/ 4
I — I = I
05 05 05
- ™
,-""/ -.\\ I/\\
.'"ll \ ,-"Il \
."ll
!
/
T T T
0.5 0.5 0.5
a) N
£ / ! Y
."II \ ;ﬂf II |II Il".|
.F'J Y / i \
.Illl \\.. l|'ll ,'I I",
fll II
/ J
I = I - I
0.5 0.5 0.5

Frequentist regression Posterior predictive regression lines

« sample data . 4.0 « sample data .t

= regression line L posterior predictive regression lines .

0.0

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 04 0.6 0.8 1.0

pyle, X, Y) = [plyle, W)p(W[X,Y) dW

0

uncertainty of x;
model

Bayesian methods

Bayesian methods can give us a full posterior to reason about;
Explicit priors;
® Uncertainty;

@® They're on the side of algorithms, not models

However

Intractable posterior for many practical cases and large datasets;
X|0)m(0)

p(o1X) = 2L

Tuning and using MCMC algorithms can be tricky. p(X)

1% hidden layer

input layer

L™ hidden layer
/_/R

output layer

i

® Parametrized models with composition of functions;

@® Trained using backpropagation and SGD;

@® Learned usually by maximizing the log likelihood;

In modern Deep Neural Networks, however, we have some challenges:

® Alotof data: ® Millions of parameters;

@® High-dimensionality in data; @® Highly non-convex surfaces;

This makes these models very difficult for Bayesian methods, therefore an approximation is required:

Variational Inference

CN
-

A
v’.

A
[
K7
A

o
S5
S
R
PN

o>
AX

Q
"/?/’
\
O

'4//
l',;
A

%

X
7%

a) Standard Neural Net (b) After applying dropout.

Dropout as a Bayesian Approximation: Insights and Applications ICML2015
Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning [ICML2016

BAYESIAN CONVOLUTIONAL NEURAL NETWORKS WITH BERNOULLI APPROXIMATE
VARIATIONAL INFERENCE ICLR2016

Deep Bayesian Active Learning with Image Data NIPS2017

BatchBALD: Ecient and Diverse Batch Acquisition for Deep Bayesian Active Learning arXiv2019.6

A deep neural network (NN) with arbitrary depth and non-linearities, with dropout applied before
every weight layer, is mathematically equivalent to an approximation to the probabilistic deep

Gaussian process model

Background

\ 4

Dropout Gaussian Processes Variational Inference

Dropout
We review the dropout NN model for the case of a single hidden layer NN.

W :QxK Wy: KxD

§ = O'(le -+ b)WQ

b e > =

b is a K dimensional vector.

z1., ~ Bernoulli(p;) forq = 1,...,Q

(a) Standard Neural Net

zo. ~ Bernoulli(ps) for b = 1,..., K.

O

W EE S

The output of the first layer is given by

o((x0z1)W1 + b) oz

Which is linearly transformed to give the dropout model’'s output

y = ((J((onl)Wl +b)) OZQ)WQ

To use the NN model for regression, we might use the Euclidean loss

1 N
E:—E n—"n2
2Nn:1Hy YH2

To use the model for classification

. . N AN
Pnd — eXp(ynd)/ (Zd’ eXp(ynd’)) IS —N Z 10g(pn,cn)

n=1

During optimisation a regularisation term is often added.

£dr0p0ut =k +)\1HW1‘3 + AQHWQH% T+ Ag‘b‘g

We sample new realisations for the binary vectors z; for every input point and every forward pass
thorough the model (evaluating the model’s output), and use the same values in the backward pass
(propagating the derivatives to the parameters).

The dropped weights z; W1 and zo W5, are often scaled by — {0 maintain constant output magni-

tude. At test time no sampling takes place. This is equlvalent to initialising the weights W, with
scale o with no further scaling at training time, and at test time scaling the weights W, by p;.

Gaussian Processes

Given a training dataset consisting of N inputs {xq,..., xn } and their corresponding outputs

4 4

{y1,...,y~n}, we would like to estimate a function y = f(x) that is likely to have generated
our observations. We denote the inputs X € R %% and the outputs Y € RN *¥.

Following the Bayesian approach we would put some prior distribution over the space of functions p(f)

This distribution represents our prior belief as to which functions are more likely and which are less likely
to have generated our data.

We then look for the posterior distribution over the space of functions

p(f]X,Y) o< p(Y|X, £)p(f)

We place a joint Gaussian distribution over all function values

F|X~ N0 KX, X)) Y |F~N(F. 7 'Ly)

For classification we sample from a categorical distribution with probabilities given by passing Y
through an element-wise softmax,

F|X~NOKX,X)) Y|F~NF,0-Iy)

Cn ‘ Y ~ Categorical (exp(yﬂd)/ (Z eXp(ynd")))

d’

Evaluating the Gaussian distribution above involves an inversion of an N by /N matrix, an operation
that requires O(N?) time complexity. Many approximations to the Gaussian process result in a
manageable time complexity. Variational inference can be used for such, and will be explained next.

Variational Inference

Consider a probabilistic model in which we collectively denote all of the ob-
served variables by X and all of the hidden variables by Z. The joint distribution
p(X,Z|0) is governed by a set of parameters denoted 6. Our goal is to maximize
the likelihood function that is given by

Z

make use of the product rule of probability

Inp(X,Z|0) =Inp(Z|X,0) + Inp(X|0)

p(Z|X,6
ﬁ(q,9)=zq(z)1ﬂ{p(i’(§)’9)} [llp) = Zq { le))}

Z

Inp(X|0) = L(q,0) + KL(q||p)

p(X,ZG)} {p(ZX,B)}
L(q,0) = 7)1 KL = — 7)1

(4,0) EZ q()n{ 1(Z) (allp) EZ (Z) I =7
Given training inputs {x1, ..., Xy} and their corresponding outputs {y1,...,yn~}

we would like to estimate a function y = f(x) that is likely to have generated our outputs.

What is a function that is likely to have generated our data?

Following the Bayesian approach we would put some prior distribution over the space of functions p(f)

This distribution represents our prior belief as to which functions are likely to have generated our data.

We define a likelihood p(Y|f.X) to capture the process in which observations are generated given a specific

function.

We then look for the posterior distribution over the space of functions given our dataset: p(f|X,Y)

This distribution captures the most likely functions given our observed data.

predict an output for a new input point x™ by integrating over all possible functions f
P XX, Y) = [y)l X Y)

To approximate it we could condition the model on a finite set of random variables W

We make a modelling assumption and assume that the model depends on these variables alone, making
them into sufficient statistics in our approximate model.

The predictive distribution for a new input point x* is then given by

Py X Y) = [By (8 w)plwlX. Y) dE*dos

The distribution p(w|X,Y') cannot usually be evaluated analytically as well. Instead we define an

approximating variational distribution g(w)

We thus minimise the Kullback—Leibler (KL) divergence KL(¢(w) || p(w|X,Y))

p(y*[x*, X, Y) = /p(y*f*)P(f*X*:w)p(wX,Y) df*dw.

oy |x") = / p(y* £ p(E* x*,) () dE e,

Minimising the Kullback—Leibler divergence is equivalent to maximising the log evidence lower
bound,

Lui= / 1(@)p(F|X.) log p(Y [F)dFdw — KL(q(w)|lp(w))

This is known as variational inference, a standard technique in Bayesian modelling.

BAYESIAN NEURAL NETWORKS

One defines a Bayesian NN by placing a prior distribution over a NN’s weights. Given weight ma-
trices W, and bias vectors b; for layer ¢, we often place standard matrix Gaussian prior distributions
over the weight matrices, p(W;):

—~

denote the random output of a NN with weight random variables (W), on input x by f(x, (W;)%)

i—

p(ylx. (W&)le) = Categorical (exp(/f)/ Z exp(ﬁp)) = /f(X? (W;)le)
7

Even though Bayesian NNs seem simple, calculating model posterior is a hard task.

To relate the approximate inference in our Bayesian NN to dropout training, we define our approxi-
mating variational distribution ¢(W;) for every layer i as

W?ﬁ — M?ﬁ ’ diag([z’i:j}ﬁri)

j=1
z; ; ~ Bernoulli(p;) fori =1,....L, j=1,...,K,_1.

M, are variational parameters to be optimised.
Lwi= [alw)p(FIX.) log p(Y[F)dFdw — KL(g(w) [p(w))

The integral is intractable and cannot be evaluated analytically. Instead, we approximate the integral with Monte
Carlo integration over WJ.

This results in an unbiased estimator

N
EVI = Z E(Yia?(xia &}7)) — KL(¢g(w)||p(w))

N
EVI = ZE(YH?(XM&}?)) — KL(g(w)||p(w))

sampling from ¢(W,) is identical to performing dropout on layer i in a network whose weights are (M)~ ,

Laopout := E + M |[W1][3 4+ \a| [Wa|[3 + A3||b][3.

The second term in ~ Lyy := /q(w)p(FX,w) log p(Y|F)dFdw — KL(g(w)]||p(w))

can be approximated resulting in the objective

N L
1 ~
ﬁdropout = N Z E(yiayi) T)\Z (HW?Hg + ||b?‘|g)
1=1 1=1

Dropout and Bayesian NNs, in effect, result in the same model parameters that best explain the
data.

Predictions in this model follow equation

Ay [x*) = / p(y* £)p(E* ", @) g(w)df*dw.

replacing the posterior p(w|X,Y) with the approximate posterior ¢ (w)

| — .
p(y*|X*,X,Y) ~ /p(y*|X*,w)q(w)dw ~ ?Zp(yﬂx*awt) W = {W’i}iL:l
t=1

Obtaining Model Uncertainty

we sample 1" sets of vectors of realisations from the Bernoulli distribution {z/, ..., z% }/_; with

z! = [z! Jj ', giving {Wi, ... Wi

T
1 s
We estimate E,(y+) (y E vy (x*, Wi, ..., W1,)

l‘;zl

We refer to this Monte Carlo estimate as MC dropout.

In practice this is equivalent to performing T stochastic forward passes through the network and averaging
the results.

Proposition 3. Given weights matrices M; of dimensions K; x K;_q, bias vectors my; of dimen-
sions I<;, and binary vectors z; of dimensions IK;_y for each layer i« = 1.....L, as well as the
approximating variational distribution

q(y*|x*) = N(y*;¥"(x*,21,....,21),7 'Ip)Bern(z1) - - - Bern(zr)
for some T > 0, with

s 1 1 .
y = —(Mpzp)o| ... - (Mng)J((Mlzl)x +m1)... .
I&L Jﬁl
we have
1 T
By () % 3 250" B2

with
z; ¢ ~ Bern(p;).

Proof.
Eqye1x9)(¥") = [¥ q(y™[x")dy”

N(y; v (x*.z1. ... ZL),T_IID)BEI’I](Zl) ---Bern(zp)dz; - - - dzpdy”

VRS

/y*N'(y*:ﬁ*(x*. Z1, ..., zL).T_IID)dy*) Bern(z;) - --Bern(zy)dz; - - -dz; dy*

(x,z1,...,zr)Bern(zy) - - - Bern(zp)dz; - - - dzp,

<)

|
\\?\

?*(X*,E‘Lt:Eth).

2
S|~
[~

o~
Il
'—I.

We estimate the second raw moment in the same way:
T 1 1
Eq(y*lx*)((y*) (y*)) =7 'Ip +TZy*(x*,wg,...,Wg)Ty*(x*,wg,...,th)
t=1
To obtain the model’s predictive variance we have:
1 T
Var(y+jx) (%) & 7 Ip + 2) ¥ (¢ Wi Wy (" WL W)
t=1

%\’ %
_Eq(y*IX*)(y) EQ(y*IX*)(y)

Proposition 4. Given weights matrices M; of dimensions K; x K,;_q, bias vectors my; of dimen-
sions IK;, and binary vectors z; of dimensions K;_q for each layer 1 = 1..... L, as well as the
approximating variational distribution
¥k . * |k
q(y*|x*) == p(y"[x". w)q(w)
qg(w) = Bern(zy) - - - Bern(zr)

p(y*|x*w) — N(y*;§*(x*,zl, "'?ZL)?T_IID)
for some T > 0, with
o 1 1
y = —(Mpzp)o| ...y/ —=—(Maza)o ((Myz1)x* +my)
I&L I&l
we have
1 T
Eqry-1x=) (¥ (y*) =77 1p + T V(X 21 200) Y (X 2 2)
t=1
with

Proof.
Eq(y1x) ((y*) " (v"))

-/ (/ (y*)T(y*)p(y*x*,wmy*)q(w)dw

— / (Covp(y* Ix* W) (y*) + Ep(y* |x*,w) (y*)TEP(Y* |x*,w) (y*)) Q(w)dw

:/(T1ID‘f‘?*(x*,zl...-«ZL)Tﬁ*(X*:Zl,....ZL))Bern(zl)---Bern(zL)dzl...dzL
1 T
~ T_]'ID + T Zﬁ*(x*:zl,tg ---.}Z\L!t)Tﬁ*(X*gEljt, ""EL,t)

t=1
* "'"‘*(*

since p(y*[x*,w) = N (y*; ¥

8.2 T

- — Standard dropout (DSN-aug)
81F 1MINTIH I+ B - MC dropout err (DSN-aug) |1
~ 8o L4\ [.
s LHNHET
5 79| 1 [:
E ____

o I it
7.7t Ill | I]

0 20 40 60 80 100
MC samples

Figure 3: Augmented-DSN test error for different number of averaged forward passes in MC
dropout (blue) averaged with 5 repetitions, shown with 1 standard deviation. In green is test error
with Standard dropout. MC dropout achieves a significant improvement (more than 1 standard
deviation) after 20 samples.

Deep Bayesian Active Learning with Image Data NIPS2017

BALD

Choose pool points that are expected to maximise the information gained about the model
parameters, i.e. maximise the mutual information between predictions and model posterior:

Points that maximize this acquisition function are points on which the model is uncertain on average, but
there exist model parameters that produce disagreeing predictions with high certainty.

This is equivalent to points with high variance in the input to the softmax layer (the logits) thus each
stochastic forward pass through the model would have the highest probability assigned to a different class.

H[ya w|x, Dtrain] — H[y|xa Dtrajn] _Ep(w\Dn.uin) [H[an wH

[y, w|x, Dyain] can be approximated in our setting using the identity

p(y — C|X, Dtrain) — fp(y — C|Xaw)p(w‘ptrain)dw

H[ya w|X7 Dtrain] — = Z /p(y — C|X, ‘-‘-’)p(‘-'-’|7)t1rain)d‘-'-J) 1Og /p(y — C|Xa w)p(w|Dtrain)dw
+ Ep(w|Dtmin) [Zp(y — C|X7 OJ) 1ng(y = C|X, (.u’)]

Swapping the posterior p(w|Dysin) With our approximate
posterior ¢ (w), and through MC sampling, we then have:

<= [bty = elx i) log [ply = cx.w)gj (w)dw

FEpr o [Zp@ — ol w) log ply — cfx. w>]

(&

~ — Z (% Z C) log (Zl%) ch 1ngc — ya w|X Dtraln]
2

defining our approximation, with p?, the probability of input
x with model parameters W; ~ ¢, (w) to take class c:

pl = [ﬁ’[, ...,ﬁc] — softmax(fat(x))

/]f[y, w|X, Dirain] E} Hly|x, q5] — Eq; (w) [H[ylxa WH ~ H[y, (.0|X, Dtrain]

BatchBALD: Efficient and Diverse Batch Acquisition for Deep Bayesian Active Learning arXiv2019.6

a batch of data points {x*;, s x}‘;} is selected using an acquisition function a which scores a candidate

batch of unlabelled data points {x, ..., X} € Dpea using the current model parameters p(w | Dirain):

{xlxb}: argmax a({xy,...,xp}, p(@ | Dirain))

BALD is defined as

I[(y , W | X, Dtrain) — H(y | X, Dtrain) - Ep(wl.‘Dtrain) [H(y | X, w, Dtrain)]

BALD (Bayesian Active Learning by Disagreement) uses an acquisition function that estimates
the mutual information between the model predictions and the model parameters.
Intuitively, it captures how strongly the model predictions for a given data point and the model

parameters are coupled, implying that finding out about the true label of data points with high
mutual information would also inform us about the true model parameters.

BALD was originally intended for acquiring individual data points and immediately retraining the model

b
(IBALD ({xla ey Xp), plw | Dtrain)) = Z I(yi; @ | xis Dirain)

i=1

which reduces to picking the top b highest-scoring data points.

We propose BatchBALD whereby we jointly score points by estimating the mutual information between a
joint of multiple data points and the model parameters.

apatchBaLd ({X1, s Xp}, P(@ | Dirain)) = L1, s 5 @ | X1, ey Xp, Dhrain).

Intuitively, the mutual information between two random variables can be seen as the intersection of their
information content.

a signed measure u* can be defined for discrete random variables x, y,

I(x;y) =p (xNy), Hix,y) = £ (xUy), EppHx|y) =pu (x\y)

Using this, BALD can be viewed as the sum of individual intersections >; 1" (y; N w), which double
counts overlaps between the y;. Naively extending BALD to the mutual information between y1, ..., v,

and w, which is equivalent to u ((); y; N w), would lead to selecting similar data points instead of
diverse ones under maximisation.

BatchBALD, on the other hand, takes overlaps into account by computing x (| J; v; N @) and is more
likely to acquire a more diverse cover under maximisation:

I[(yla s Vb s W | X155 Xps Dtrain) — I[_I(ylzb | X1:bs Dtrain) - Ep(wl@train) IH(yl:b | X1:p, W, Dtrain)

APl

Yy1|21 Y1l
Y1 |2 Ya|x2
Yy1|®3 y3|x3

D 10 01X Digain) = D 1 05N @) L0, Y53 @ X1, e X, Diain) = ,u*[U yi mm]

i

(a) BALD (b) BatchBALD

leave out conditioning on X1, ..., X,, and Dypain, and p(w) denotes p(w | Dirain)
]I(yl N | X155 Xps Z)train) — I[_I(ylzb | X1:bs Z)train) - Ep(wIZ)train) :[H(yl:b | X1:p, W, Dtrain)

(BatchBALD ({xl 5 oo xn (w)) — IH()I 5 . ayn) - Ep(a)) [H(yl s +ees ¥Vn | w)]

Because the y; are independent when conditioned on w, computing the right term of equation

is simplified as the conditional joint entropy decomposes into a sum

We can approximate the expectation using a Monte-Carlo estimator with k samples from our model parameter
distribution

Epw) [HE1 o v | 0)] = ZEP“") H(y; |w)] ~ ZZIHO,Iw;)

Applying the equality p(y) = Eyw) [p(y | w)]

k k
1 o 1 A
~- [E ; PG 1 |w,-)] log{E ,Z; PG1n ""”J

Yin

Efficient implementation

In each iteration of the algorithm, x, ..., x,—; stay fixed while x,, varies over Dpoo1 \ A,—1. We can
reduce the required computations by factorizing p(y;., | w) into POV 1n-1 | @) p(ys | @). We store
P(V1:-1 | @) In @ matrix Py.,—; of shape ¢ X k and p(y, |w;) in a matrix P, of shape ¢ X k. The sum

Sh PG [@) in (

12

) can be then be turned into a matrix product:

k k
1 A A 1 A A "~ A 1 A A~
E ZP(YI:n |w;) = E Zp(yl:n—l |w;) p(yn |w;) = (EPI:H—IP;];)
J=1 j=1

Yin—1-Yn

k k
1 NN 1 A e [P
= D P01 @) = =) PGt [0) P00 | @)) = (EPI;H_.PZ)
j=1 =1

Yin—1-Yn

This can be further sped up by using batch matrix multiplication to compute the joint entropy for
dlfferent X,. P, only has to be computed once, and we can recursively compute P, using Py,
and P,, which allows us to sample p(y | w;) for each x € Dy, oOnly once at the beginning of the
algorithm.

Algorithm 1: Greedy BatchBALD 1 — 1/e.-approximate algorithm

Input: acquisition size b, unlabelled dataset Dyq01, model parameters p(w | Dirain)
Ao — 0

for n — 1tob do

foreach x € Dpool \An—l do Sx € dBatchBALD (An—l U {X} ’ p(w | Dtrain))

X, < argmax Sy
xe@pool \A n—1

An — An—l U {xn}
6 end
Output: acquisition batch A,, = {x, ..., x}}

= W N =

0.9% A

0.90 -

o

o]

[
A

o
oy
(=]

Accuracy

0.75 -

0.70 -

0.65

- —— Batch écquisition sizel

—— Batch acquisition size 10
— Batch acquisition size 40

100

150

(a) BALD

200 250

Acquired dataset size

Accuracy

0.9%

0.90 -

o

feu]

(=}
1

0.75

0.70 14

. —— Batch écquisition size5
—— Batch acquisition size 10
——— Batch acquisition size 40

0.65

50

100

150 200 250
Acquired dataset size

(b) BatchBALD

0.5

0.4 1

=
o

Accuracy

=
Pl

0.1

i

—— BatchBALD
— Random

—— BALD

Figure 7: Performance on EMNIST. BatchBALD
consistently outperforms both random acquisition and

0 100 150 200 250

Acguired dataset size

350

125 -
E: 3.00 -
=
= Bl T

2,50 +

225 44! - - - -

' —— BatchBALD
| —— BALD
(_1[3': “ T L T T |
10 20 30 40 50 60

Acquisition iteration

Figure 8: Entropy of acquired class labels over acqui-
sition steps on EMNIST. BatchBALD steadily acquires

BALD while BALD is unable to beat random acquisi- a more diverse set of data points.

tion.

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 37, NO. 3, MAY 1991

A New Outlook on Shannon’s
Information Measures

Raymond W. Yeung, Member, IEEE
p*(XUY)=H(X,Y)
p*(X) = H(X)
p*(Y)=H(Y)
p(XNY)=I(X:;Y)
pH(X-Y)=H(X|Y) (X-Y=XnNY°
(¥ = X) = H(Y|X) “((

U x)n(u r)-(u)
w((X0Y))=H(X|Y)+ H(YIX)

XeEG YEG ZeG”)

(2L

(,y,710(,Y)

Yedo'

B(Y|X,Z)

+u

el U e

YeG ZeG"

—p,*(U Z) by Lemma la
(z) ZeG”

H(X)

=H((X,X€G),(Z,Z<G"))
+H({(Y,.YeG),(Z,Z€EG"))
-H{(X,XeG).(Y,YEG),(Z,Z€G"))

1(X;Y:2) -H(Z,ZeG")

Fig. 2. I-Diagram for X, Y, and Z. = I(X,X€G;Y,Y€GZ,ZeG")

B(Z|X.Y)
H(X|Y,2)

UX;Z|Y)

Example 1: We first point out that I(X;Y;Z) is sym-
metrical in X, Y, and Z. We see from Fig. 2 that

I(X;Y)-I(X;Y|Z)
=1(Y;2)- I(Y; Z|X)
=I(X;Z)-I(X;Z2|Y)

(=1(X;Y;2)).

This identity is not well known although it is simple.
Example 2: 1et X and Z be independent. Then

(X;Z)=1I(X;ZIY)+ I(X;Y;Z)=0.

Since /(X;Z|Y) is nonnegative, /(X;Y; Z) must be non-
positive. Therefore

I(X;Y)=IK(X;Y|Z)+ (X:Y;Z) < I(X;Y|Z).

This is readily obtained by inspection of Fig. 2.
Example 3: If X, Y, and Z are pairwise independent,
then

I(X;Y)=KY;Z)=I(X;Z) (=0).
Then it can be seen by inspection of Fig. 2 that
(X:Y|Z)=I(Y;ZIX)=1(X;Z|Y).

