Efficient nonmyopic batch active search

ICML 2017

Introduction

T ~ the number of queries we can provide the oracle $\Sigma_{i=1}^{T} y_i$ ~ the number of targets identified

Previous work developed policies for active search by appealing to Bayesian decision theory. This policy in the general case requires exponential computation.

To overcome this intractability, the authors of that work proposed using myopic lookahead policies in practice, which compute the optimal policy only up to a limited number of steps into the future.

The Optimal Policy

$$\mathcal{X} \triangleq \{x_i\} \qquad y \triangleq \mathbb{1}\{x \in \mathcal{R}\}$$
$$\mathcal{D} \triangleq \{(x_i, y_i)\} \qquad u(\mathcal{D}) \triangleq \sum_{y_i \in \mathcal{D}} y_i$$
$$\mathcal{D}_i \triangleq \{(x_j, y_j)\}_{j=1}^i \operatorname{Pr}(y = 1 \mid x, \mathcal{D})$$

Bayesian decision theory: $x_{i}^{*} = \underset{x_{i} \in \mathcal{X} \setminus \mathcal{D}_{i-1}}{\operatorname{arg\,max}} \mathbb{E}\left[u(\mathcal{D}_{t}) \mid x_{i}, \mathcal{D}_{i-1}\right]$

The Optimal Policy

i = t:

$$\mathbb{E}\left[u(\mathcal{D}_t) \mid x_t, \mathcal{D}_{t-1}\right] = \sum_{y_t} u(\mathcal{D}_t) \operatorname{Pr}(y_t \mid x_t, \mathcal{D}_{t-1})$$

$$= u(\mathcal{D}_{t-1}) + \operatorname{Pr}(y_t = 1 \mid x_t, \mathcal{D}_{t-1}).$$
i = t - 1:

$$\mathbb{E}\left[u(\mathcal{D}_t) \mid x_{t-1}, \mathcal{D}_{t-2}\right] = u(\mathcal{D}_{t-2}) + \Pr(y_{t-1} = 1 \mid x_{t-1}, \mathcal{D}_{t-2}) + \mathbb{E}_{y_{t-1}}\left[\max_{x_t} \Pr(y_t = 1 \mid x_t, \mathcal{D}_{t-1})\right]$$

The Optimal Policy

$$i < t:$$

$$\mathbb{E} \left[u(\mathcal{D}_{t}) \mid x_{i}, \mathcal{D}_{i-1} \right] = u(\mathcal{D}_{i-1}) + \qquad \mathcal{O} \left((2n)^{\ell} \right)$$

$$\underbrace{\Pr(y_{i} = 1 \mid x_{i}, \mathcal{D}_{i-1})}_{\text{exploitation, < 1}} + \qquad \mathcal{O} \left((2n)^{\ell} \right)$$

$$\ell = t - i + 1$$

$$\underbrace{\mathbb{E}_{y_{i}} \left[\max_{x'} \mathbb{E} \left[u(\mathcal{D}_{t} \setminus \mathcal{D}_{i}) \mid x', \mathcal{D}_{i} \right] \right]}_{\text{exploration, < t-i}}$$

If we assume that after observing D_i , the labels of all remaining unlabeled points are conditionally independent, then this approximation recovers the Bayesian optimal policy exactly.

$$\max_{x'} \mathbb{E} \left[u(\mathcal{D}_t \setminus \mathcal{D}_i) \mid x', \mathcal{D}_i \right] \approx \sum_{t-i}' \Pr(y = 1 \mid x, \mathcal{D}_i) \\ \mathbb{E} \left[u(\mathcal{D}_t) \mid x_i, \mathcal{D}_{i-1} \right] \approx u(\mathcal{D}_{i-1}) + \mathcal{O}(n^2 \log n) \\ \Pr(y_i = 1 \mid x_i, \mathcal{D}_{i-1}) + \mathcal{O}(n^2 \log n) \\ \underbrace{\mathbb{E}_{y_i} \left[\sum_{t-i}' \Pr(y = 1 \mid x, \mathcal{D}_i) \right]}_{\text{exploration, < t-i}} \right]$$

Experiments

(c)

(d)

Experiments

39788 computer science papers published in the top-50 most popular computer science venues

Experiments

$CiteSeer^x$ data							
	query number						
policy	100	300	500	700	900		
RG	19.7	60.0	104	140	176		
IMS	26.3	86.3	147	214	281		
one-step	25.5	80.5	141	209	273		
two-step	24.9	89.8	155	220	287		
ens-900	25.9	94.3	163	239	308		
ens-700	28.0	105	188	259			
ENS-500	28.7	112	189				
ENS-300	26.4	105					
ens-100	30.7						

BMG data							
	query number						
policy	100	300	500	700	900		
RG	48.6	144	243	336	427		
IMS	93.6	276	451	629	799		
one-step two-step	90.8 91.0	273 273	450 452	633 632	798 802		
ENS-900 ENS-700 ENS-500 ENS-300 ENS-100	89.0 91.3 92.4 92.8 94.5	270 276 279 279	453 460 466	635 645	815		

Efficient nonmyopic batch active search NIPS 2018

$$\mathbb{E}[u(\mathcal{D}_t \setminus \mathcal{D}_i) \mid X, \mathcal{D}_i] = \sum_{x \in X} \Pr(y = 1 \mid x, \mathcal{D}_i) + \mathbb{E}_{Y \mid X, \mathcal{D}_i} \left[\max_{X' : \mid X' \mid = T - b - \mid \mathcal{D}_i \mid} \mathbb{E}[u(Y') \mid X', \mathcal{D}_i, X, Y] \right]$$

	1	5	10	15	20	25	50	75	100
UGB	-	257.6	257.9	258.3	250.1	246.0	218.8	206.2	172.1
greedy	269.8	268.1	264.1	261.6	258.2	257.0	240.1	227.2	208.2
ss-one-1	269.8	260.7	254.6	245.2	233.6	223.4	200.8	182.9	178.9
ss-one-m	269.8	264.5	257.7	250.0	244.4	236.5	211.7	195.4	179.4
ss-one-s	269.8	266.8	261.3	256.7	248.7	244.1	214.9	202.4	181.3
ss-one-0	269.8	268.1	264.1	261.6	258.2	257.0	240.1	227.2	208.2
ss-two-1	281.1	237.1	219.8	210.8	212.1	196.2	172.1	158.8	152.9
ss-two-m	281.1	252.6	246.4	237.2	232.9	225.1	200.2	181.6	167.2
ss-two-s	281.1	248.9	242.5	235.3	226.6	219.2	196.7	175.3	158.3
ss-two-0	281.1	252.5	247.6	247.9	244.4	240.4	225.6	213.8	199.1
ss-ens-1	295.1	269.4	247.9	227.2	223.1	210.3	185.3	152.6	148.7
ss-ENS-m	295.1	293.8	290.2	285.3	281.6	274.4	249.4	217.2	203.1
ss-ENS-s	295.1	289.9	278.3	269.8	262.6	255.0	220.8	185.5	161.2
ss-ens-0	295.1	293.6	289.1	288.1	287.5	280.7	269.2	257.2	241.0
batch-ENS-16	295.1	300.8	296.2	293.9	292.1	288.0	275.8	272.3	252.9
batch-ENS-32	295.1	300.8	295.5	297.9	290.6	288.8	281.4	275.5	263.5

Multi-Class Active Learning by Uncertainty Sampling with Diversity Maximization IJCV 2015

$$H(\ell_i) = -\sum_{j}^{c} P(\mathcal{C}_j | x_i) log \left(P(\mathcal{C}_j | x_i) \right)$$
$$\max_{\sum_i f_i = 1, f_i \ge 0} \sum_{x_i \in \mathcal{P}} -f_i \times \sum_j^{c} P(\mathcal{C}_j | x_i) log \left(P(\mathcal{C}_j | x_i) \right)$$
$$- \Omega(f_i)$$

The term $\Omega(f_i)$ is a function on f encoding the data distribution information, in other words, the diversity criterion in decision making.

$$\min_{f_i} \Omega(f_i) = \min_{f_i} \sum_{i=1}^n \sum_{j=1}^n f_i f_j K_{ij}$$

$$K_{ij} = \frac{-\|x_i - x_j\|^2}{\sigma^2}$$

