Model-Free Subset Selection

- Introduction
- Active Learning
 - Distance-based
 - Ensemble-based
- Dataset Distillation
 - Synthesize Summaries
 - Gradient-Analysis

Introduction

- Big data presents new challenges as gathering, storing, and analyzing them becomes expensive.
- Select or generate small summaries of large data sets.
- Aim to
 - Train a model with less data, e.g. active learning
 - Get a small dataset, e.g. video summarization

Content

- Active Learning
 - Distance-based
 - Ensemble-based
- Dataset Distillation
 - Synthesize Summaries
 - Gradient-Analysis

Core-Set [ICLR, 2018]

$\min_{\mathbf{s}^1:|\mathbf{s}^1|\leq b} \max_{i} \min_{j\in\mathbf{s}^1\cup\mathbf{s}^0} \Delta(\mathbf{x}_i,\mathbf{x}_j)$

choose b center points such that the largest distance between a data point and its nearest center is minimized

Algorithm 1 k-Center-Greedy

Input: data \mathbf{x}_i , existing pool \mathbf{s}^0 and a budget bInitialize $\mathbf{s} = \mathbf{s}^0$ repeat $u = \arg \max_{i \in [n] \setminus \mathbf{s}} \min_{j \in \mathbf{s}} \Delta(\mathbf{x}_i, \mathbf{x}_j)$ $\mathbf{s} = \mathbf{s} \cup \{u\}$ until $|\mathbf{s}| = b + |\mathbf{s}^0|$ return $\mathbf{s} \setminus \mathbf{s}^0$

$Feasible(b, \mathbf{s}^0, \delta, \Xi) \longrightarrow \min_{\mathbf{s}^1} \max_i \min_{j \in \mathbf{s}^1 \cup \mathbf{s}^0} \Delta(\mathbf{x}_i, \mathbf{x}_j) \le \delta.$

Core-Set

Assume an upper limit on the number of outliers Ξ such that our algorithm can choose not to cover at most Ξ unsupervised data points.

Algorithm 2 Robust k-Center

Input: data \mathbf{x}_i , existing pool \mathbf{s}^0 , budget b and outlier bound Ξ Initialize $\mathbf{s}_g = \mathbf{k}$ -Center-Greedy $(\mathbf{x}_i, \mathbf{s}^0, b)$ $\delta_{2-OPT} = \max_j \min_{i \in \mathbf{s}_a} \Delta(\mathbf{x}_i, \mathbf{x}_j)$ $lb = \frac{\delta_{2-OPT}}{2}$, $ub = \delta_{2-OPT}$ repeat if $Feasible(b, \mathbf{s}^0, \frac{lb+ub}{2}, \Xi)$ then $ub = \max_{i,j|\Delta(\mathbf{x}_i, \mathbf{x}_j) \leq \frac{lb+ub}{2}} \Delta(\mathbf{x}_i, \mathbf{x}_j)$ else $lb = \min_{i,j|\Delta(\mathbf{x}_i, \mathbf{x}_j) \geq \frac{lb+ub}{2}} \Delta(\mathbf{x}_i, \mathbf{x}_j)$ end if until ub = lbreturn $\{i \ s.t. \ u_i = 1\}$

Figure 2: Visualizations of the variables. In this solution, the 4^{th} node is chosen as a center and nodes 0, 1, 3 are in a δ ball around it. The 2^{nd} node is marked as an outlier.

Figure 3: Results on Active Learning for Weakly-Supervised Model (error bars are std-dev)

Figure 4: Results on Active Learning for Fully-Supervised Model (error bars are std-dev)

Diverse mini-batch Active Learning

$$f(\mathcal{S}) = \sum_{x_i \in \mathcal{X}^U} \min_{x_j \in \mathcal{S}} d(x_i, x_j) \qquad \mathcal{S} \subseteq \mathcal{X}^U$$

Facility Location

K-Means:

$$\sum_{x_i \in \mathcal{X}^U} \sum_k z_{i,k} \|x_i - \mu_k\|^2$$

Assume we are also given informativeness scores s_i for every example

Weighted *K*-Means:

$$\sum_{x_i \in \mathcal{X}^U} \sum_k |z_{i,k} s_i| \|x_i - \mu_k\|^2$$

[Zhdanov (Amazon). Diverse mini-batch Active Learning. ArXiv, 2019.]

Algorithm 1 Diverse mini-Batch Active Learning (DBAL)

Input: dataset of examples x_i , budget B, batch-size k, pre-filter factor β Select first k examples randomly, obtain labels for these examples

repeat

Train classifier on all the examples selected so far

Get informativeness for every unlabeled example

Prefilter to top βk informative examples Cluster βk examples to k clusters with (weighted) K-means

Select k different examples closest to the cluster centers, obtain labels for these examples

until Budget B is exhausted

Figure 1: Accuracy on Browse Nodes UK dataset

Figure 2: Accuracy on 20 Newsgroups Dataset

Figure 3: Accuracy on MNIST dataset

Figure 5: Accuracy on CIFAR-10 dataset

Content

- Active Learning
 - Distance-based
 - Ensemble-based
- Dataset Distillation
 - Synthesize Summaries
 - Gradient-Analysis

Active Dataset Subsampling

[Chitta, et.al. (NVIDIA). Less is More: An Exploration of Data Redundancy with Active Dataset Subsampling. ArXiv, 2019.]

Active Dataset Subsampling

- 1. A labeled dataset, consisting of N_l labeled pairs, $L = \{(\mathbf{x}_l^j, y_l^j)\}_{j=1}^{N_l}$, where each $\mathbf{x}^j \in X$ is a data point and each $y^j \in Y$ is its corresponding label.
- 2. An **acquisition model**, $\mathcal{M}_a : X \to Y$. For our ensemble based uncertainty estimation technique, the acquisition model \mathcal{M}_a takes the form of a set of *E* different DNNs with parameters $\{\theta_a^{(e)}\}_{e=1}^E$.
- 3. A subsampled dataset, $S = \{(\mathbf{x}_s^j, y_s^j)\}_{j=1}^{N_s}$, where S is a subset of L selected using an acquisition function $\alpha(\mathbf{x}, \mathcal{M}_a)$.
- 4. A subset model, $\mathcal{M}_s : X \to Y$, with parameters θ_s , trained on S.

Initialization

- The **pre-train scheme** uses the entire dataset L for pre-training both the acquisition and subset models. During optimization, the subset model is then fine tuned on the subsampled dataset S.
- In the **compress scheme**, the acquisition model is pre-trained on L but the subset model is randomly initialized and trained from scratch on S. The acquisition model therefore accesses all the data and then 'compresses' the dataset for the subset model.
- In the **build-up scheme**, we aim to emulate an iteration in a typical active learning loop. A set of existing subset models are used as an acquisition model, in an approach with multiple iterations of ADS.

Experiment

Minimum-Margin Active Learning

 $margin(h, z) = h(z; \hat{y}_1(z)) - h(z; \hat{y}_2(z))$

Algorithm 1 Min-Margin Active Sampling

Inputs: Initial sample \mathcal{T}_0 , candidate sample set \mathcal{Z} , number of bootstrapped models K, bootstrap sample size fraction β , number of candidate examples to select B, learning procedure H**Bootstrap**: For each k = 1, ..., K, let \mathcal{T}_k be a random sample with replacement from \mathcal{T}_0 of $\lfloor \beta N_g \rfloor$ examples from each class g, and $h_k := H(\mathcal{T}_k)$ **Score**: For each candidate $z \in \mathcal{Z}$, let $score(z) := \min_{k \in [K]} margin(h_k, z)$.

Return the *B* candidates from \mathcal{Z} with lowest *score*.

[Jiang and Gupta (Google). ArXiv, 2019.]

Illustration

one-shot setting

Content

- Active Learning
 - Distance-based
 - Ensemble-based
- Dataset Distillation
 - Synthesize Summaries
 - Gradient-Analysis

Synthesize Summaries

Standard training:
$$\theta^* = \arg\min_{\theta} \frac{1}{N} \sum_{i=1}^N \ell(x_i, \theta)$$
 $\theta_{t+1} = \theta_t - \eta \nabla_{\theta_t} \ell(\mathbf{x}_t, \theta_t)$ Slow!

of update steps to converge. Instead, we aim to learn a tiny set of synthetic distilled training data $\tilde{\mathbf{x}} = {\tilde{x}_i}_{i=1}^M$ with $M \ll N$ and a corresponding learning rate η so that a single GD step such as $\theta_1 = \theta_0 - \tilde{\eta} \nabla_{\theta_0} \ell(\tilde{\mathbf{x}}, \theta_0)$ (2)

using these learned synthetic data $\tilde{\mathbf{x}}$ can greatly boost the performance on the real test set. Given an

$$\tilde{\mathbf{x}}^*, \tilde{\eta}^* = \operatorname*{arg\,min}_{\tilde{\mathbf{x}}, \tilde{\eta}} \mathcal{L}(\tilde{\mathbf{x}}, \tilde{\eta}; \theta_0) = \operatorname*{arg\,min}_{\tilde{\mathbf{x}}, \tilde{\eta}} \ell(\mathbf{x}, \theta_1) = \operatorname*{arg\,min}_{\tilde{\mathbf{x}}, \tilde{\eta}} \ell(\mathbf{x}, \theta_0 - \tilde{\eta} \nabla_{\theta_0} \ell(\tilde{\mathbf{x}}, \theta_0))$$

The above distilled data optimized for a given initialization do not generalize well to other initializations.

$$\tilde{\mathbf{x}}^*, \tilde{\eta}^* = \operatorname*{arg\,min}_{\tilde{\mathbf{x}}, \tilde{\eta}} \mathbb{E}_{\theta_0 \sim p(\theta_0)} \mathcal{L}(\tilde{\mathbf{x}}, \tilde{\eta}; \theta_0)$$

Synthesize Summaries

Algorithm 1 Dataset Distillation

Input: $p(\theta_0)$: distribution of initial weights; M: the number of distilled data **Input:** α : step size; n: batch size; T: the number of optimization iterations; $\tilde{\eta}_0$: initial value for $\tilde{\eta}$ 1: Initialize $\hat{\mathbf{x}} = {\{\tilde{x}_i\}}_{i=1}^M$ randomly, $\tilde{\eta} \leftarrow \tilde{\eta}_0$ 2: for each training step t = 1 to T do 3: Get a minibatch of real training data $\mathbf{x}_t = \{x_{t,j}\}_{j=1}^n$ Sample a batch of initial weights $\theta_0^{(j)} \sim p(\theta_0)$ 4: for each sampled $\theta_0^{(j)}$ do 5: Compute updated parameter with GD: $\theta_1^{(j)} = \theta_0^{(j)} - \tilde{\eta} \nabla_{\theta_0^{(j)}} \ell(\tilde{\mathbf{x}}, \theta_0^{(j)})$ 6: Evaluate the objective function on real training data: $\mathcal{L}^{(j)} = \ell(\mathbf{x}_t, \theta_1^{(j)})$ 7: 8: end for Update $\tilde{\mathbf{x}} \leftarrow \tilde{\mathbf{x}} - \alpha \nabla_{\tilde{\mathbf{x}}} \sum_{j} \mathcal{L}^{(j)}$, and $\tilde{\eta} \leftarrow \tilde{\eta} - \alpha \nabla_{\tilde{\eta}} \sum_{j} \mathcal{L}^{(j)}$ 9: 10: end for **Output:** distilled data $\tilde{\mathbf{x}}$ and optimized learning rate $\tilde{\eta}$

Content

- Active Learning
 - Distance-based
 - Ensemble-based

Dataset Distillation

- Synthesize Summaries
- Gradient Analysis

Gradient Analysis

• Objective:

$$f_{\theta}^* = \arg \min_{f_{\theta} \in \mathcal{F}_{\theta}} \mathcal{L}(f_{\theta})$$

where

$$\mathcal{L}(f_{\theta}) = \left(\frac{1}{N} \sum_{i=1}^{N} l(f_{\theta}(\mathbf{x}_{i}), y_{i})\right) + \mathcal{R}(f_{\theta})$$
$$= \left(\frac{1}{N} \sum_{i=1}^{N} L_{i,\theta}\right) + \mathcal{R}(f_{\theta}).$$

• Batch Gradient Descent

$$\theta_{t+1} \leftarrow \theta_t - \left(\frac{\eta_t}{|\mathcal{B}_t|} \sum_{i \in \mathcal{B}_t} \nabla_{\theta} L_{i,\theta_t}\right) - \eta_t \nabla_{\theta} \mathcal{R}(f_{\theta_t})$$

• The magnitude of change in parameters from one iteration to the next:

$$\|\theta_{t+1} - \theta_t\| = \left\| \left(\frac{\eta_t}{|\mathcal{B}_t|} \sum_{i \in \mathcal{B}_t} \nabla_{\theta} L_{i,\theta_t} \right) - \eta_t \nabla_{\theta} \mathcal{R}(f_{\theta_t}) \right\|$$

• Upper bound:

$$\left\|\sum_{i\in\mathcal{B}_t}\nabla_{\theta}L_{i,\theta}\right\| \leq \sum_{i\in\mathcal{B}_t} \left\|\nabla_{\theta}L_{i,\theta}\right\|$$

• Top-k images with largest gradient magnitude

$$\mathcal{B}^* = \max_{\mathcal{B}:|\mathcal{B}|=k} \sum_{i=1}^N ||\nabla_{\theta} L_{i,\theta}||$$

Gradient Analysis

Algorithm 1 Gradient Analysis

- 1: **procedure** ANALYSIS(f_{θ})
- 2: Train network f_{θ} on all data
- 3: Compute test accuracy
- 4: **for** i = 1, ..., N **do**
- 5: **return** SUBSAMPLE_ANALYSIS (f_{θ})
- 1: **procedure** SUBSAMPLE_ANALYSIS(f_{θ})
- 2: Subsample data using ∇_i \triangleright See Section 3.3
- 3: Retrain network f_{θ} on subsampled data only
- 4: **return** data subsample, test accuracy

Experiments

Figure 3: Top-1 test accuracy for MNIST. *Non-extreme Max-Gradient* overtakes *Random* when using 0.6% of training data. *Max-Gradient* overtakes *Random* when using 3% of training data.

(a) AlexNet; last data point uses 80% of the dataset

(b) VGG16; last data point computed with pretrained model

Summary

- Data-Based
 - Representative
 - Diversity
- Model-Based
 - Influence for model: uncertainty, gradient
 - Committee: inconsistency