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| R-CNN

B One can apply high-capacity convolutional neural networks (CNNs) to
bottom-up region proposals in order to localize and segment objects

® When labeled training data is scarce, supervised pre-training for an
auxiliary task, followed by domain-specific fine-tuning, yields a significant
performance boost
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I Region proposal

m Sliding window
This process will be extremely slow if we use deep learning CNN for image

classification at each location.

m Selective search
Selective Search for Object Recognition JCV-2013




| R-CNN

B Problems with R-CNN:

1.

It still takes a huge amount of time to train the network
as you would have to classify 2000 region proposals per
image. (Expensive in Space and Time)

It cannot be implemented real time as it takes around 47
seconds for each test image. (Slow Object Detection)
The selective search algorithm is a fixed algorithm.
Therefore, no learning is happening at that stage. This
could lead to the generation of bad candidate region

proposals.(Fixed the region proposals)
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I SPP-Net(Spatial Pyramid Pooling)

B Remove the fixed-size constraint of the network
B SPP uses multi-level spatial bins, Multi-level pooling has been shown to be
robust to object deformations
B SPP can pool features extracted at variable scales thanks to the flexibility of
flly-connected layrs (g £
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I SPP-Net(Spatial Pyramid Pooling)

B Remove the fixed-size constraint of the network

B SPP uses multi-level spatial bins, Multi-level pooling has been shown to be
robust to object deformations

B SPP can pool features extracted at variable scales thanks to the flexibility of

Input scales. SPP-net

Classify regions with SVMs

Fully-connected layers
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| Fast R-CNN

B Instead of feeding the region proposals to the CNN, we feed the input
image to the CNN to generate a convolutional feature map.
B |dentify the region of proposals and warp them into squares and by

using a Rol pooling layer we reshape them into a fixed size

: Outputs: bbox
=iDeep softmax regressor
ConvNet =——l ==
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L J‘ == pooling
iy | Rol Y ” ’—(FHCSF

/g =l projection\:\
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| Fast R-CNN

B The Rol pooling layer uses max pooling to convert the features inside
any valid region of interest into a small feature map with a fixed spatial
extent of H x W, where H and W are layer hyper-parameters that are
independent of any particular Rol.

max pooling

W
input image and region proposal pooling section result



| Fast R-CNN

B Multi-task loss
Since Fast R-CNN is an end-to-end learning architecture to learn the class
of object as well as the associated bounding box position and size, the loss

Is multi-task loss.

L(p,u,t",v) = Las(p, u) + Au > 1] L. (%, v),

J[llm(ﬁ”’j -1;) — Z SI’HCICIll‘l,.[,1 (ﬁ? — 'I,?.i),
L. 1s the log loss for true class w. i€ {x,y,w,h}

L;,s 1S the loss for bounding box. in which

0.5z2 if |z| < 1
x| — 0.5 otherwise,

smoothy, () = {



| Faster R-CNN

B Region Proposal Network

~ classifier

In R-CNN and Fast R-CNN, the region Rol pooling

proposal approach/network and the

detection network are decoupled. pmpoy /

In Faster R-CNN , RPN using SS is replaced

. Region Proposal Network
by RPN using CNN. ”t o
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I Hard example mining (Bootstrapping)

B The key idea was to gradually grow, or bootstrap, the set of background
examples by selecting those examples for which the detector triggers a
false alarm

B An iterative training algorithm

1. updating the detection model given the current set of examples

2. then using the updated model to find new false positives to add to the

bootstrapped training set

B The problem for CNN model

Freezing the model for even a few iterations at a time would dramatically

slow progress.



I loU(Intersection over Union)

B Intersection over Union (loU) is a metric that allows us to evaluate how

similar our predicted bounding box is to the ground truth bounding

. Sample loU scores
0.905 0.532 0.391 0.143 0.0

Overlapping Region

loU = Combined Region D




| R-CNN

W |ts intersection over union (loU) overlap with a ground-truth bounding
box should be at least 0.5 (Positive Samples)

B A region is labeled background if its maximum loU with ground truth is
In the interval [bg;,, 0.5) (Negative samples)

m Balancing fg-bg Rols

Rebalance the foreground-to-background ratio in each mini-batch to a
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I OHEM (online hard example mining)

B Intuition

It has always been detection datasets contain an overwhelming number of
easy examples and a small number of hard examples. Automatic selection of
these hard examples can make training more effective and efficient.

The key is that although each SGD iteration samples only a small number of
iImages, each image contains thousands of example Rols from which we can
select the hard examples rather than a heuristically sampled subset.



I Method

m Specific Method
1. For an input image at SGD iteration ¢, we first compute a conv feature

map using the conv network.
2. Then the Rol network uses this feature map and the all the input Rols (R),

instead of a sampled mini-batch, to do a forward pass.
3. Hard examples are selected by sorting the input Rols by loss and taking
the B/N examples for which the current network performs worst

B Co-located Rols with high overlap are likely to have correlated losses

Using standard non-maximum suppression (NMS) to perform deduplication



I NMS (Non-Maximum Suppression )
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Architecture of OHEM
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Figure 2: Architecture of the proposed training algorithm. Given an image, and selective search Rols, the conv network
computes a conv feature map. In (a), the readonly Rol network runs a forward pass on the feature map and all Rols (shown
in green arrows). Then the Hard Rol module uses these Rol losses to select 5 examples. In (b), these hard examples are used
by the Rol network to compute forward and backward passes (shown in red arrows).



I Experiment

B Two standard ConvNet architectures

VGG CNN M 1024 (VGGM)
VGG16 from

B Dataset
PASCAL VOCO7 dataset

« OHEM vs. heuristic sampling(1-4)
« Robust gradient estimates(5-6)
« Use all Rols(7-10)

Table 1: Impact of hyperparameters on FRCN training.

Experiment Model N LR B bg_.lo 07 mAP

] VGGM 59.6
5 Fast R-CNN [14] VGG16 2 0.001 128 0.1 672
Removing hard mining  VGGM 57.2
heuristic (Section 5.2) VGGI16 2 0001 128 0 67.5

5  Fewer images per batch 0.1 66.3
6 (Section 5.3) veale 10001 128 0 66.3
7 1 57.7
8 Bigger batch, High LR veeM 2 0.004 2043 0 60.4
o (Section 5.4) : 675
10 VGG16 ) 0.003 2048 0 687
11 vVGGle 1 0.001 128 0 69.7
12 Our Approach VGGM 62.0
3 VGG16 2 0001 128 0 69.9




I Experiment

e FRCN FRCN (N=1)
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Table 2: Computational statistics of training FRCN [14] and
FRCN with OHEM (using an Nvidia Titan X GPU).
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Figure 3: Training loss is computed for various training pro-
cedures using VGG 16 networks discussed in Section 5. We
report mean loss per Rol. These results indicate that using
hard mining for training leads to lower training loss than
any of the other heuristics.

VGGM VGGI16
FRCN Ours FRCN FRCN* Ours*
time (sec/iter) 0.13 0.22 0.60 0.57 1.00
max. memory (G) 2.6 3.6 11.2 6.4 8.7

*: uses gradient accumulation over two forward/backward passes



I Experiment

Table 3: VOC 2007 test detection average precision (%). All methods use VGG16. Training set key: 07: VOCO7 trainval, 07+12: union
of 07 and VOC12 trainval. All methods use bounding-box regression. Legend: M: using multi-scale for training and testing, B: multi-stage
bbox regression. FRCN* refers to FRCN [14] with our training schedule.

method M B trainset | mAP |aero bike bird boat bottle bus car cat chair cow table dog horse mbike persn plant sheep sofa train tv

FRCN [14] 07 66.9 |74.5 783 692 532 36.6 77.3 782 820 40.7 727 679 796 792 730 69.0 30.1 654 702 75.8 65.8
FRCN* 07 67.2 |74.6 76.8 67.6 529 378 787 78.8 81.6 422 73.6 67.0 794 796 741 683 334 659 687 754 68.1
Ours 07 69.9 [71.2 783 69.2 579 465 81.8 79.1 832 479 762 689 832 808 758 727 399 675 662 756 759
FRCN* v v o7 724 |77.8 81.3 714 604 483 850 84.6 86.2 494 80.7 68.1 84.1 86.7 802 753 387 719 715 779 67.8
MR-CNN [13] v v 07 74.9 |78.7 81.8 76.7 66.6 61.8 81.7 853 827 57.0 81.9 73.2 84.6 860 805 749 449 717 69.7 78.7 79.9
Ours v v 07 75.1 |77.7 819 76.0 649 558 863 86.0 868 53.2 829 703 850 863 787 78.0 468 76.1 727 80.9 755
FRCN [14] 07+12 |70.0 [77.0 78.1 69.3 59.4 383 81.6 78.6 86.7 42.8 78.8 0689 847 820 766 69.9 318 70.1 748 80.4 704
Ours 07412 |74.6 |(77.7 81.2 74.1 64.2 502 86.2 83.8 88.1 552 809 73.8 851 826 778 749 437 761 742 823 796
MR-CNN [13] v v |07+12 |78.2 80.3 84.1 785 70.8 685 88.0 859 878 60.3 852 737 872 86.5 85.0 76.4 485 763 755 85.0 81.0
Ours v v | 07+12 789 80.6 85.7 79.8 69.9 60.8 88.3 87.9 89.6 59.7 85.1 76.5 87.1 873 824 78.8 53.7 80.5 78.7 845 80.7

Table 4: VOC 2012 test detection average precision (%). All methods use VGG16. Training set key: 12: VOCI12 trainval, 07+4+12: union
of VOCO7 trainval, VOCO07 test, and VOC12 trainval. Legend: M: using multi-scale for training and testing, B: iterative bbox regression.

method M B |trainset | mAP |aero bike bird boat bottle bus car cat chair cow table dog horse mbike persn plant sheep sofa train tv

FRCN [14] 12 65.7 |80.3 747 669 469 37.7 739 68.6 87.7 41.7 71.1 51.1 860 77.8 79.8 69.8 321 655 63.8 76.4 61.7
Ours! 12 69.8 |81.5 789 69.6 523 465 774 72.1 882 488 738 583 869 79.7 814 750 430 69.5 64.8 785 689
MR-CNN [13] v v 12 70.7 |85.0 79.6 71.5 553 57.7 76.0 739 846 505 743 61.7 855 799 817 764 410 69.0 612 77.7 72.1
Ours? v ov12 72,9 [85.8 823 74.1 55.8 55.1 795 777 904 521 755 584 886 824 831 783 470 772 65.1 793 704
FRCN [14] 07++12 |68.4 |82.3 784 70.8 523 387 77.8 71.6 89.3 442 73.0 550 875 80.5 80.8 720 351 683 657 80.4 64.2
Ours? 07++12 | 719 |83.0 813 725 556 49.0 789 747 89.5 523 75.0 61.0 879 809 824 763 47.1 725 67.3 806 712
MR-CNN [13] v v 07++12 |73.9 |85.5 829 76.6 57.8 627 794 772 86.6 550 79.1 622 87.0 834 847 789 453 734 658 803 740
Ours* v v 07++12 (763 86.3 85.0 77.0 60.9 593 81.9 81.1 91.9 55.8 80.6 63.0 90.8 85.1 853 80.7 549 783 70.8 82.8 749

lhttp ://host .robots.ox.ac.uk:8080/anonymous/XNDVK7.html, 2':1ttp: //host.robots.ox.ac.uk:8080/anonymous/H49PTT . .html,



I Other Skill for class imbalance

B Focal loss

Focal Loss for Dense Object Detection

ify=1
otherwise.

— log(p)
— log(1 —p)
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