Interactively Shaping Agents via Human Reinforcement

W. Bradley Knox . Peter Stone
The University of Texas at Austin
K-CAP-2009

Introduction

Background: As computational learning agents move into domains that incur real
costs (e.g., autonomous driving or financial investment), it will be necessary to
learn good policies without numerous high-cost learning trials.

Goal: learn from human to speed learning

Learning from Advice

Learning from Advice
* suggesting an action when a certain condition is true.

* [1]created a domain-specific natural language interface for giving advice to a
reinforcement learner.

» general natural language recognition is unsolved

* Moreover, work still remains on how to embed advice into agents that learn from
experience.

[1]G. Kuhlmann, P. Stone, R. Mooney, and J. Shavlik. Guiding a reinforcement learner with natural
language advice: Initial results in RoboCup soccer

Learning from demonstration

 Human provide trajectories

* Learn reward or policy

Learning from Reinforcement

Provide human signal to shape the agent

[1] Their agent seeks to maximize the sum of human reinforcement and environmental reward.

A. Thomaz and C. Breazeal. Reinforcement Learning with Human Teachers: Evidence of Feedback and
Guidance with Implications for Learning Performance

Framework

Human Environment
H:-SxA->R
Reinforcement Action MDP/R
H(s,a) a
/_ Action \
Selector
Reinforcement
Agent TF‘redicti ns
Reinforcement
Supervised Model
e H:SxA—R

\ H(s,a) /

Algorithm

Algorithm 1 A general greedy TAMER algorithm

Require: Input: stepSize
1: ReinfModel.init(stepSize)
5 <0

g 4 8

while {rue do

h «— getHumanReinfSincePreviousTimeStep()
if h # 0 then

error < h - ReinfModel.predictReinf(7)

Rez'nfModel.update(T, error)
end if
10: |S « getStateVec()
L) a — argmaz, (ReinfModel.predict(getFeatures(’s , a)))

12: 7 «— getFeatures(’s , a)
13: takeAction(a)

14.: wait for next time step
15: end while

REVE

1EIL

0

§

Credit assignment

c; = P(event starting at t; was targeted)

= P(target event between t;_1 and t; sec. ago)

- [e

Z P(event starting at t; was targeted) = 1
1=1

Algorithm?2

Require: Input: stepSize, windowSize,
: Crediter.init(windowSize)

S,
s P
—)
w
: while true do

Crediter.update Time(clockTime())
h «— getHumanReinfSincePreviousTimeStep()

1t /1 # 0 then
—————
credFeats «— 0

ct < Crediter.assignCredit(t)

credFeats «— credFeats + (ct X Tt))
end for i@
error «— h — (W - credFeats)

— — : N T
W «— W+ (stepSize X error XcredFeats)
nd if

for all (7;, t) € Crediter.historyWindow do

s «— getStateVec()
a — argmaz,(W- (getFeatures(s, a)))

= —
f <« getFeatures('s, a)

DD b= = et e e
S BB BOONN HOD IOV CORS =

takeAction(a)
—
21 Crediter.update Window(f)
22: wait for next time step

23: end while

EIL

REVE

H

§

Experiment-Tetris

Table 1: Results of various Tetris agents.

Method Mean Lines Cleared Games

at Game 3 at Peak | for Peak
TAMER 65.89 65.89 3
RRL-KBR [15] 5 50 120

~ 0 (no learning 3183 1500
Policy Iteration [2]

until game 100)

~ (0 (no learning 586,103 3000
Genetic Algorithm [5]

until game 500)

~ 0 (no learning 348,895 5000

CE+RL [17]

until game 100)

Environmental Reward (Lines Cleared)

300
250
200
150

100

o)
o

Mean Reward By Group in Tetris

T T

.

"All trainers ——
Al background ----%---
No technical background -

Rapdom‘(u‘i@iﬁ‘al weights) ---@---

Game Number

10

Mountain Car

Env. Reward (Time to Goal)

1 | s e s A — S— S—— — — % -100
' ' 3
-150 o -150
()
i B | g
-200 E 200
-250 | ,'% -250 |
| | | 3
300 | FAMER, Over 2nd and 3rd Runs =——+— | € 300 |
Sarsa-3 »o @ >
20 »@
350 Sarsa-20 » W _agn

Mean Reward in Mountain Car

0 2 4 6 8

Cumulative Environmental Reward

(Time to Goal)

-500
-1000
-1500
-2000
-2500
-3000
-3500
-4000

10 12 14 16 18 20
Episode Number

Mean Reward (Best and Worst Trainers) in M.C.

-y et
© "Nyl “rag,,
" “
" .
.
"

Best5Tra|ners ——
Worst 5 Trainers -+ I

Sarsa-3 @

Sarsa-20 » @«

2 4 6 8 10 12 14 16 18 20
Episode Number

Mean Cumulative Reward in Mountain Car

| TAMER, Over 2nd and 3rd Runs —— '®,,

- Sarsa 3 soflline ‘,..,‘..
L 1 L Slarsa-?o ""?.uc i L T

0O 2 4 6 8 10 12 14 16 18

Episode Number

Conclusion

 works in the absence of an environmental reward function,

* reduces sample complexity
* is accessible to people who lack knowledge of computer science

R EIE L RABTERLES

XL 2
Y:reward loss

5.8 1

3.6 1

3.4 4

5.2 4

5.0

4.8 1

5.9

5.8

5.7 1

5.6

5.5

5.4

5.3 1

5.2 1

5.1 ~

-8 active
random

A —

—8— active
random

.\/\/ /

F IR HLEIR
SIUAK TS
A1 #45TA
SHHK

KA E
EERIRIR
SvsHEAIE#]

AT

X HNE 2
Y:value loss

X H =
Y:value loss

1.2

1.0

0.8 A

0.6

0.4 A

0.2

0.0 A

1.2 1

1.0 1

0.8 1

0.6 1

0.4 1

0.2 +

0.0

RN

—8— active
random

T T T T
4 6 8 10

—8— random
random

WA

HKAEE]
EXibvig) ‘*‘lﬁ
PONVAY ick] Bvi

HIRZS

Bl E# IR
vsE B # UG
RS

