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Introduction

Background: As computational learning agents move into domains that incur real
costs (e.g., autonomous driving or financial investment), it will be necessary to
learn good policies without numerous high-cost learning trials.

Goal: learn from human to speed learning



Learning from Advice

Learning from Advice
* suggesting an action when a certain condition is true.

* [1]created a domain-specific natural language interface for giving advice to a
reinforcement learner.

» general natural language recognition is unsolved

* Moreover, work still remains on how to embed advice into agents that learn from
experience.

[1]G. Kuhlmann, P. Stone, R. Mooney, and J. Shavlik. Guiding a reinforcement learner with natural
language advice: Initial results in RoboCup soccer



Learning from demonstration

 Human provide trajectories

* Learn reward or policy



Learning from Reinforcement

Provide human signal to shape the agent

[1] Their agent seeks to maximize the sum of human reinforcement and environmental reward.

A. Thomaz and C. Breazeal. Reinforcement Learning with Human Teachers: Evidence of Feedback and
Guidance with Implications for Learning Performance
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Algorithm

Algorithm 1 A general greedy TAMER algorithm

Require: Input: stepSize
1: ReinfModel.init(stepSize)
5 <0

g 4 8

while {rue do

h «— getHumanReinfSincePreviousTimeStep()
if h # 0 then

error < h - ReinfModel.predictReinf( 7 )

Rez'nfModel.update(T, error)
end if
10: |S « getStateVec()
L) a — argmaz, (ReinfModel.predict(getFeatures(’s , a)))

12: 7 «— getFeatures(’s , a)
13: takeAction(a)

14.: wait for next time step
15: end while
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Credit assignment

c; = P(event starting at t; was targeted)

= P(target event between t;_1 and t; sec. ago)

- [ e

Z P(event starting at t; was targeted) = 1
1=1



Algorithm?2

Require: Input: stepSize, windowSize,
: Crediter.init(windowSize)

S,
s P
—)
w
: while true do

Crediter.update Time(clockTime())
h «— getHumanReinfSincePreviousTimeStep()

1t /1 # 0 then
—————
credFeats «— 0

ct < Crediter.assignCredit(t)

credFeats «— credFeats + (ct X Tt))
end for i@
error «— h — ( W - credFeats )

— — : N T
W «— W+ (stepSize X error XcredFeats)
nd if

for all ( 7;, t) € Crediter.historyWindow do

s «— getStateVec()
a — argmaz,( W- (getFeatures(s, a)))

= —
f <« getFeatures('s, a)

DD b= = et e e
S BB BOONN HOD IOV CORS =

takeAction(a)
—
21 Crediter.update Window( f )
22: wait for next time step

23: end while
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Experiment-Tetris

Table 1: Results of various Tetris agents.

Method Mean Lines Cleared Games

at Game 3 at Peak | for Peak
TAMER 65.89 65.89 3
RRL-KBR [15] 5 50 120

~ 0 (no learning 3183 1500
Policy Iteration [2]

until game 100)

~ (0 (no learning 586,103 3000
Genetic Algorithm [5]

until game 500)

~ 0 (no learning 348,895 5000

CE+RL [17]

until game 100)
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Mountain Car
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Conclusion

 works in the absence of an environmental reward function,

* reduces sample complexity
* is accessible to people who lack knowledge of computer science
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XL 2
Y:reward loss
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X HNE 2
Y:value loss
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