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Bayesian neural networks

GCN(Kipf and Welling 2017)

Since W is not deterministic, the output of neural network is also a random variable. Prediction for a new 

input X can be formed by integrating with respect to the posterior distribution of W as follows:



The integral is in general intractable.

Expectation propagation

Variational inference       

Markov Chain Monte Carlo  



Deep Bayesian Active Learning with Image Data    (NIPS2017)

Max Entropy

Choose pool points that are expected to maximize the information gained about the model 

parameters: maximise the mutual information between predictions and model posterior.

Approximate the acquisition function using approximate distribution







Weight Uncertainty in Neural Networks    ICML2015

Bayesian inference for neural networks calculates the posterior distribution of the weights given 

the training data

Thus taking an expectation under the posterior distribution on weights is equivalent to using 

an ensemble of an uncountably infinite number of neural networks.



*** suggested finding a variational approximation to the Bayesian posterior distribution on the 

weights. Variational learning finds the parameters of a distribution on the weights that 

minimizes the KL divergence with the true Bayesian posterior on the weights:

The cost function is a sum of a data-dependent part, which we shall refer to as the likelihood cost, 

and a prior-dependent part, which we shall refer to as the complexity cost. The cost function 

embodies a trade-off between satisfying the complexity of the data D and satisfying the simplicity

prior P(w).





Apply Proposition 1 to the optimisation problem

Using Monte Carlo sampling to evaluate the expectations, a backpropagation-like algorithm is 

obtained for variational Bayesian inference in neural networks-Bayes by Backprop – which uses 

unbiased estimates of gradients of the cost to learn a distribution over the weights of a neural network

Bayes by Backprop operates on weights (of which there are a great many), whilst most previous 

work applies this method to learning distributions on stochastic hidden units (of which there are far 

fewer than the number of weights).

Unlike previous work, we do not use the closed form of the complexity cost (or entropic part)



Note that every term of this approximate cost depends upon the particular weights drawn 

from the variational posterior: this is an instance of a variance reduction technique known as 

common random numbers.

Suppose that the variational posterior is a diagonal Gaussian distribution, then a sample of the 

weights w can be obtained by sampling a unit Gaussian, shifting it by a mean 𝜇 and scaling by a 

standard deviation 𝜎.





Note that the 
𝜕𝑓(𝐰,𝜃)

𝜕𝐰
term of the gradients for the mean and standard deviation are shared and 

are exactly the gradients found by the usual backpropagation algorithm on a neural 

network.

Thus, to learn both the mean and the standard deviation we must simply calculate the usual 

gradients found by backpropagation, and then scale and shift them as above.



Monte Carlo dropout is equivalent to drawing samples of W from the approximate posterior

The uncertainty in the weights induces prediction uncertainty by marginalising over the 

approximate posterior using Monte Carlo integration:



The goal is to compute the posterior probability of labels, which can be written as:

Various parametric random graph generation models can be used to model

A Monte Carlo approximation



Assortative mixed membership stochastic block model

Since G is often noisy and may not fit the adopted parametric block model well, sampling 

𝜋𝑣 and 𝛽𝑣 can lead to high variance. Instead, replace the integration over 𝜋 and 𝛽 with a 

maximum a posteriori estimate.



Posterior inference for the MMSBM
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