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Introduction

* Tasks of IRL-reward learning or apprenticeship learning.
* model the IRL problem from a Bayesian Perspective.

 Solve the problem with a modified MCMC algorithm.



Approach

« We observe expert’s behavior O = {(s;, a;),(s,, ay) ...(sx, ax)}.

* The expert’s policy is stationary, make the following assumption:

Pr(0|R) = Pr((s1,a1)|R)Pr((sz, az)|R) ... Pr((sk, ax)|R) 7
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Priors

* If we are completely agnostic about the prior:
Uniform distribution over =R, < R(S) < Rpyax

* Most states have negligible rewards:
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* most states to have low (or negative) rewards but a few states to have high
rewards:
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Tasks-Reward Learning

Liinear (R R) — H R — R “ 1
Lsg(R,R) = |R-R|>

The expected value of LSE (R, R) is minimized by setting R to the mean of the posterior.

Similarly, the expected linear loss is minimized by setting R to the median of the distribution.



Tasks-Apprenticeship Learning

policy loss functions:

Ly oticy(R, ) = V*(R) = V™(R) ||,

policy

So, instead of trying a difficult direct minimization of the expected policy loss, we can find the
optimal policy for the mean reward function, which gives the same answer.

Theorem 3. Given a distribution P(R) over reward
functions R for an MDP (S, A, T,~), the loss function

p o o, ol . ” : * . ) .
L olicy (R, m) is minimized for all p by 77, the optimal policy

for the Markov Decision Problem M = (S, A,T,~, Ep[R]).



Algorithm

Algorithm Po1licyWalk(Distribution P, MDP M, Step Size § )

1. Pick a random reward vector R € R/®1 /5.

2. m:=PolicylIteration(M, R)

3. Repeat
(a) Pick a reward vector R uniformly at random from the

neighbours of R in R'®! /6.
(b) Compute Q™ (s, a, R) forall (s,a) €
() If3(s,a) € (S,4),Q"(s,m(s), R) < Q (5 a, R)
n(M,R,n)

. —PollcyIteratlo

ii. Set R := R and « T w1th probability
min{l, 5 P(R 7')}
Else _
i. Set R := R with probability min{1, 512}
4. Return R

Figure 3: PolicyWalk Sampling Algorithm

* Both reward learning and apprenticeship learning require
computing the mean of the posterior distribution.
« MCMC combined with policy iteration.



Experiments

Reward Loss Policy Loss
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Figure 4: Reward Loss. Figure 5: Policy Loss.

* BIRL vs IRL by(Ng and Russell, 2000)



Experiments

Posterior Samples
—
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Figure 6: Scatter diagrams of sampled rewards of two arbi-
trary states for a given MDP and expert trajectory. Our com-
puted posterior is shown to be close to the true distribution.

* Posterior samples vs true rewards



Experiments-domain knowledge
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A adventure game

Reward - Ising prior.
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Figure 7: Ising versus Uninformed Priors for Adventure
Games
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Conclusion

* We model the IRL problem from a Bayesian Perspective.
* Solve the problem with a modified MCMC algorithm.

* We get improved solution.



