Active Semi-Supervised Learning Using Sampling Theory

for Graph Signals (KDD2014)
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Motivation and Problem Definition

» Unlabeled data is abundant. Labeled data is expensive and scarce.

» Solution: Active Semi-supervised Learning (SSL).

» Problem setting: Offline, pool-based, batch-mode active SSL via graphs
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How to predict unknown labels from the known labels?
What is the optimal set of nodes to label given the learning algorithm? }




Graph Signal Processing

» Graph G = (V, ) with N nodes

» nodes = data points; wj;: similarity between / and j.

» Adjacency matrix W = [w;j]nxn.
> Degree matrix D = diag{}_; w;}.
» LaplacianL =D — W.

» Normalized Laplacian £ = D~Y/2LD /2,

» Graph signal f : V — R, denoted as f € R,

» Class membership functions are graph signals. f(3)

crn )1, if node j is in class ¢
FU) = { 0. otherwise



Spectrum of L provides frequency interpretation:
» N\ € [0,2]: graph frequencies.

» uk: graph Fourier basis.
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> Fourier coefficients of f: f(\;) = (f, u;).
» Graph Fourier Transform (GFT):

f=U'f.



A smooth or low-pass graph signal can be obtained by forcing high frequency GFT coefficients to
vanish, w-bandlimited signal on a graph have zero GFT coefficients for frequencies above its bandwidth
W.

» w-bandlimited signal: GFT has support [0, w].

» Paley-Wiener space PW,,(G): Space of all w-bandlimited signals.

» PW,,(G) is a subspace of RV,
> w; <wy = PW,,(G) C PW,,(G).

» Bandwidth of a signal: =

w(f) = argmaxf()\) s.t. [F(\)] >0
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» (Class membership functions can be approximated by bandlimited graph
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P1:Cut-off frequency

L,(5¢) denote the space of all graph signals that are zero everywhere except possibly on the nodes
in S¢,i.e., Vo € L,(5¢),¢(S) = 0. Also, let w(¢) denote the bandwidth of a graph signal ¢, i.e., the
value of the maximum non-zero frequency of that signal.

Sampling theorem. For a graph G, with normalized Laplacian L, any signal f € PW,,(G) can be perfectly
recovered from its values on a subset of nodes S c V if and only if

w<w($) 2 inf (@)



Intuitively, a signal ¢ € L,(5¢) can be added to any input signal f without affecting its sampled version
(since ¢ is identically zero for all vertices that are sampled, i.e., those in §).

Thus, if there existed a ¢ € L,(5¢) such that ¢ € PW,(G) we would have that both f and ¢ + f belong
to PW,,(G) and lead to the same set of samples on S. So clearly it would not be possible to recover
them both, and thus sampling of such signals in PW,,(G) would not be possible. The conditions in
sampling theorem ensures that PW,(G)NL,(S¢) = {0} and no such ¢ exists.

Approximate the bandwidth of any signal ¢ for a given integer parameter k > 0 as follows

(¢th¢>1/k

PP

¢th¢ 1/k . . _ .
wi (P) = ( o) > %lS) = ¢ellel(fSC) or(P) = qbelLIzl(fSC)

Numerically, Q,(S) and ¢;, can be determined from the smallest eigenpair (o x, ¥, x) of the reduced

matrix (L¥)qc:
; O (S) = 014, Pr(S€) =P i Pr(S) = 0.



Sampling Theorem

f can be perfectly recovered from f(S) iff

> A
W) <we(S)= inf w(p)
(’bLz(SC)

Condition for unique sampling of PW,,(G) on &
Let Lo(SS) = {6 : ¢(S) = 0}. Then, we need PW,,(G) N Lo(S<) = {0}




Approximate bandwidth of a signal =

T pke /K
wi (f) = (fffff> , where k € Z™" /_\

» Monotonicity: Vf, ki < ko = wi, (F) < wi, ().
» Convergence: limy_, oo wi(f) = w(f).

Minimize approximate bandwidth over L,(S¢) to estimate cut-off frequency
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Let {014, Y14} — smallest eigen-pair of (L£")sc.

Estimated cutoff frequency Qi (S) = (o1.4)" ",
Corresponding smoothest signal ¢7" (S) = ¥1.«, ¢7° (S) = 0.

P2:Sampling set

» Optimal sampling set should maximally capture signal information.

> Sopt = arg maxs|_n, {2«(S) — combinatorial!

» Greedy gradient-based approach.
» Start with S = {0}.

» Add nodes one by one while ensuring maximum increase in 4(S).

The hope is that Q. (S) reaches the target cut-off w, with minimum number of node additions to S.
To understand which nodes should be included in S, we introduce a binary relaxation of out cut-off formulation by
defining the following matrix

M (t) = L +aDt), keZ ,a>0,tecR"



M{(t)2 LF +aD), keZ ,a>0tecRY

D(t) is a diagonal matrix with t on its diagonal. (Ag(t),x)(t)) denote the smallest eigen-pair of My (t)

binary relaxation 4
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relax the constraint

If 1,:V - {0,1} denotes the indicator function for the subset S(i.e. 1(S) = 1 and 1(5¢) = 0)

AY(1s) = inf (Xtﬁkx + ax(S)tx(S))

x xix xtx

When a > 1, the compoents x(S) are highly penalized during minimization. If x; (1) is the minimizer,
then [x5 (15)](S) — 0, i.e. the values on nodes S tend to be very small.



o xi(s) O R NAs) G| = e (KaI) ~ aei)

t=15

Start with an empty S(15 = 0), if at each step, include the node on which the smoothest signal ¢, € L,(5¢)
has maximum energy(i.e., 1,(i) < 1,i = max[(¢;(j))?]), then the cut-off estimate Q,(S) tends to increase
J

maximally.

Algorithm 1 Greedy heuristic for finding St

Input: G = {V, E}, L, target size m, parameter k € Z™.
Initialize: S = {0}.
1: while |[S| < m do Qk(S) = 01 1,

2:  For &, compute the smoothest signal ¢, € La(S°) . e *’
using and (5). O (8 ) = ¢1,k, o) (3) = 0.
v — arg max; (¢ (2))2]
S+ SUw.

end while
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» Cut-off function €2« (S) = variation of smoothest signal in L2(S°).

» Larger cut-off function = more variation in ¢opt = more cross-links.

Intuition

Unlabeled nodes are strongly connected to labeled nodes!




P3:Reconstruction

A graph signal f € PW,,(G) can be written as a linear combination eigenvecctors of L with eigenvalues less
than w,

f(S°) = Use xa” where, a® = argmin ||Us xa — £(S)|

(84

K is the index of eigenvectors with eigenvalues less than the cut-off w.(S)

If the true signal f € PW,,(G), then the prediction is perfect. However, this is not the case in most
problems, the prediction error ||f — f|| roughly equals the portion of energy of the true signal in [w.(S), 1y]
frequency band.
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signal reconstruction

“Input: G = {V, E}, L, target size m, parameter k € AR
Initialize: S = {0}
while |S| <m

For &, compute the smoothest signal ¢;"" € Ly(S°)
v + arg max, [(¢7" (1))°]
S+ SUvw

-, end while
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POCS iteration: f;, 1 = P¢, P, £

Label of node n = arg max,_ f(n)
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Graph Theoretic Interpretation Minimal Dirichlet energy partitions for graphs(2014)

A new measure of optimality for graph partitions, based on the sum of the Dirichlet eigenvalues
of the partition components

min Z AV,

V=IIr |
. .. L . 2
Define the Dirichlet energy of a subset S c V A(S) = |¢1||nf . VY. e
V:
Y|se=0
Vo= 3 wylwi—v)®  lE=Ydw? =Y wy;  reb]
(i,j)eE €S j

If = xs, then |||71,,||3V’Esimply reduces to ;s jescW;,j = |0S|, implying that measures variations

across the boundary of §. A(S) is a measure of the connectedness of S that takes into both interior
similarity as well as similarity to the rest of the graph.



A(S) satisfies the following Dirichlet eigenvalue problem in S, for some corresponding eigenvector,ip = (S).

Ap=M) onScCV A e DD

v =20 on S°.
This expression appears more commonly as part of discrete 01(S) = inf x'Lx
Dirichlet eigenvalue problems on graphs. Specially, it is x(S)=0

equal to the Dirichlet energy of the subset S¢.

Expand the objective function for any x

2
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Therefore, give a current selected S, the greedy algorithm selects the next node that maximizes
the increase in

. P
Q(S)~ inf > (d—ﬂ) x5
= J

jese

Due to the constraint ||x|| = 1, the expression being minimized is essentially an infimum over a
convex combination of the fractional out-degrees and its value is largely determined by nodes j € S¢
for which p;/d; is small.

Thus, in the simplest case, out selection algorithm tries to remove those nodes from the unlabeled
set that are weakly connected to nodes in the labeled set.
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Figure 4: Toy example comparing the nodes selected using different active learning methods
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