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Motivation and Problem Definition



Graph Signal Processing





A smooth or low-pass graph signal can be obtained by forcing high frequency GFT coefficients to 

vanish,  w-bandlimited signal on a graph have zero GFT coefficients for frequencies above its bandwidth 

w.



P1:Cut-off frequency

Sampling theorem. For a graph G, with normalized Laplacian L, any signal 𝐟 ∈ 𝑃𝑊𝜔(𝐺) can be perfectly 

recovered from its values on a subset of nodes 𝑆 ⊂ 𝑉 if and only if 

𝜔 < 𝜔𝑐(𝑆) ≜ inf
𝜙∈𝐿2(𝑆

𝑐)
𝜔(𝜙)

𝐿2(𝑆
𝑐) denote the space of all graph signals that are zero everywhere except possibly on the nodes 

in 𝑆𝑐,i.e., ∀𝜙 ∈ 𝐿2 𝑆𝑐 , 𝜙 𝑆 = 0. Also, let 𝜔(𝜙) denote the bandwidth of a graph signal 𝜙, i.e., the 

value of the maximum non-zero frequency of that signal.



Intuitively, a signal 𝜙 ∈ 𝐿2(𝑆
𝑐) can be added to any input signal 𝐟 without affecting its sampled version 

(since 𝜙 is identically zero for all vertices that are sampled, i.e., those in 𝑆). 

Thus, if there existed a 𝜙 ∈ 𝐿2(𝑆
𝑐) such that 𝜙 ∈ 𝑃𝑊𝜔(𝐺) we would have that both 𝐟 and 𝜙 + 𝐟 belong 

to 𝑃𝑊𝜔(𝐺) and lead to the same set of samples on 𝑆. So clearly it would not be possible to recover 

them both, and thus sampling of such signals in 𝑃𝑊𝜔(𝐺) would not be possible. The conditions in 

sampling theorem ensures that 𝑃𝑊𝜔 𝐺 ⋂𝐿2 𝑆𝑐 = {0} and no such 𝜙 exists.

Approximate the bandwidth of any signal 𝜙 for a given integer parameter 𝑘 > 0 as follows

𝜔𝑘 𝜙 =
𝜙𝑡𝐿𝑘𝜙

𝜙𝑡𝜙

1/𝑘

Ω𝑘 𝑆 = inf
𝜙∈𝐿2(𝑆

𝑐)
𝜔𝑘 𝜙 = inf

𝜙∈𝐿2(𝑆
𝑐)

𝜙𝑡𝐿𝑘𝜙

𝜙𝑡𝜙

1/𝑘

Numerically, Ω𝑘 𝑆 and 𝜙𝑘
∗ can be determined from the smallest eigenpair (𝜎1,𝑘 , 𝜓1,𝑘) of the reduced 

matrix (𝐿𝑘)𝑆𝑐: 
Ω𝑘 𝑆 = 𝜎1,𝑘 , 𝜙𝑘

∗ 𝑆𝑐 = 𝜓1,𝑘 𝜙𝑘
∗ 𝑆 = 0.







P2:Sampling set

The hope is that Ω𝑘(𝑆) reaches the target cut-off 𝜔𝑐 with minimum number of node additions to 𝑆.

To understand which nodes should be included in 𝑆, we introduce a binary relaxation of out cut-off formulation by 

defining the following matrix



When 𝛼 ≫ 1, the compoents 𝐱(𝑆) are highly penalized during minimization. If 𝑥𝑘
𝛼(𝟏𝑆) is the minimizer, 

then 𝑥𝑘
𝛼 𝟏𝑆 𝑆 → 0, i.e. the values on nodes 𝑆 tend to be very small. 

If 𝟏𝑠: 𝑉 → {0,1} denotes the indicator function for the subset 𝑆(𝑖. 𝑒. 𝟏 𝑆 = 𝟏 𝑎𝑛𝑑 𝟏 𝑆𝑐 = 𝟎)



Start with an empty 𝑆(𝟏𝒔 = 𝟎), if at each step, include the node on which the smoothest signal 𝜙𝑘
∗ ∈ 𝐿2(𝑆

𝑐)
has maximum energy(i.e., 𝟏𝒔 𝑖 ← 1, i = max

𝑗
𝜙𝑘
∗(𝑗) 2 ), then the cut-off estimate Ω𝑘(𝑆) tends to increase 

maximally.





P3:Reconstruction

A graph signal 𝐟 ∈ 𝑃𝑊𝜔(𝐺) can be written as a linear combination eigenvecctors of 𝐿 with eigenvalues less 

than 𝜔,

𝒦 is the index of eigenvectors with eigenvalues less than the cut-off 𝜔𝑐(𝑆)

If the true signal 𝐟 ∈ 𝑃𝑊𝜔 𝐺 , then the prediction is perfect. However, this is not the case in most 

problems, the prediction error 𝐟 − መ𝐟 roughly equals the portion of energy of the true signal in 𝜔𝑐 𝑆 , 𝜆𝑁
frequency band.





Graph Theoretic Interpretation

A new measure of optimality for graph partitions, based on the sum of the Dirichlet eigenvalues 

of the partition components

Define the Dirichlet energy of a subset 𝑆 ⊂ 𝑉

If 𝜓 = 𝜒𝑆, then 𝛻𝜓 𝑤,𝐸

2
simply reduces to σ𝑖∈𝑆,𝑗∈𝑆𝑐𝑤𝑖,𝑗 ≡ 𝜕𝑆 , implying that measures variations 

across the boundary of 𝑆. 𝜆(𝑆) is a measure of the connectedness of 𝑆 that takes into both interior 

similarity as well as similarity to the rest of the graph.

Minimal Dirichlet energy partitions for graphs(2014)



𝜆(𝑆) satisfies the following Dirichlet eigenvalue problem in 𝑆, for some corresponding eigenvector,𝜓 = 𝜓(𝑆).

This expression appears more commonly as part of discrete 

Dirichlet eigenvalue problems on graphs. Specially, it is 

equal to the Dirichlet energy of the subset 𝑆𝑐.

Expand the objective function for any 𝐱
with constraint 𝐱 𝑆 = 𝟎



Therefore, give a current selected 𝑆, the greedy algorithm selects the next node that maximizes 

the increase in

Due to the constraint 𝐱 = 1, the expression being minimized is essentially an infimum over a 

convex combination of the fractional out-degrees and its value is largely determined by nodes 𝑗 ∈ 𝑆𝑐

for which 𝑝𝑗/𝑑𝑗 is small. 

Thus, in the simplest case, out selection algorithm tries to remove those nodes from the unlabeled 

set that are weakly connected to nodes in the labeled set.




