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1 Introduction

One-class novelty detection: quantifying the probability that a test example belongs to the

distribution defined by training examples.

Learn a representative latent space for the given class.

Infer based on the projection of a query image onto the learned latent space.

Compare query image and its inverse image (reconstruction)

Assumption:

when an out-of-class object is presented to the network, it
will do a poor job of describing the object, thereby
reporting a relatively higher reconstruction error.
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1 Introduction

« Auto-encoders trained on digits with a simple shape such as 0 and 1 have high novelty detection
accuracy.

« In contrast, digits with complex shapes, such as digit 8, have relatively weaker novelty detection
accuracy.

» A latent space learned for a class with complex shapes inherently learns to represent some of out-
of-class objects as well.

Proposed OCGAN:
- in-class samples are well represented
- out-of-class samples are poorly represented
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2 Proposed Method

———
-c

L N

A




2-1 Motivation

Force the entirety of
the latent space to
represent only the
given class!
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2-2 Denoising auto-encoder

Original Input Latent Representation Reconstructed Output

.‘ ’ — Encoder — — Decoder —>.‘ (
X h r

h

—[Emgm

— — IMSE = ||z — De(En(z + n))||5
Denoising Autoencoder

Add noise to input image Output denoised image



2-2 Latent Discriminator

En E
~g

Latent Discriminator
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Force latent representations of in-class examples to
be distributed uniformly across the latent space.

The latent discriminator is trained to differentiate
between latent representations of real images of the
given class and samples drawn from a U(—1,1)¢
distribution.

‘E]atent - _(ESNTU{—LU[ID% Dy(s)]+
Esp, [log(1 —(Du(En(z + m))))
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2-2 Visual Discriminator

| sample exhaustively from the latent space
.| s ‘; g S and ensure corresponding images are not
De i from out-of-class

—

1 4 all images generated from latent samples
are from the same image space
distribution as the given class

Visual Discriminator
lvisual = —(Esnw(—1,1)[log|Dy(De(s) )] + Visual discriminator is trained to differentiate
Eprp, [log(l — Dy (z)]) between images of the given class and images

generated from random latent samples.
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2-2 Informative-negative Mining

There are latent space regions that do not
produce images of the given class. This is
because sampling from all regions in the
latent space is impossible during training.

(a) (b)
Figure 3. Visualization of generated images from random latent . . .
samples when the network is trained (a) without informative- Actively seek regions in the latent space that
negative mining (b) with informative-negative mining, for digit produce images of poor quality.

9. In the former case, obtained digits are of a different shape in
certain instances. For example, the highlighted generated-image
looks like a 0. In the latter case, all generated digits consistently
look like a 9.



2-2 Informative-negative Mining

Classifier

Classifier determines how well the given
image resembles content of the given class

Positive: in-class samples
Negative: fake images

Before

- EIFIREI
- ANDEIE
- BYSIIEIArS
. BPRGEE

Figure 4. Informative-negative mining. Shown in the image are
image pairs before and after mining process for different digits. In
the top row, original images are subjected to substantial changes
where they have been converted into a different digits altogether.
These are the informative-negatives we are looking for. In the bot-
tom row, the change is not substantial, which means the samples
we mined are not informative. However, it still does not hurt our
training process.




2-2 Network

I De D | Images of known class

Reconstructed image using known class image

C | Fake Image

: Latent vector of known class image
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Input : Set of training data x, iteration size IV,

parameter A
Output: Models: En, De, C., D; . D,

for iteration I to — N do
Proposed Algo rlthm CIHSSI:ﬁBT upﬁg; kcflgep Db Dﬂ’ En, Deﬁxgd_
n+— N(0,1)
ly «— En(z +n)
lo +— U(—]_, 1)
Letassifier ¢— C(De(l2),0) + C(De(l4),1)
Back-propagatel qjaqisier to change C
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end



3 Experiments




3 Experiments

Table 1. Mean One-class novelty detection using Protocol 1.

MNIST | COIL | fMNIST
ALOCC DR [20] | 0.88 0.809 | 0.753
ALOCC D [20] 0.82 0.686 | 0.601
DCAE [21] 0.899 0.949 | 0.908
GPND [16] 0.932 0.968 | 0.901
OCGAN 0.977 0.995 | 0.924




3 Experiments

Table 2. One-class novelty detection results for MNIST dataset using Protocol 2.

0 l 2 3 4 S 6 7 8 9 MEAN
OCSVM [24] | 0.988 | 0.999 | 0.902 | 0.950 | 0.955 | 0.968 | 0.978 | 0.965 | 0.853 | 0.955 | 0.9513
KDE [] 0.885 | 0.996 | 0.710 | 0.693 | 0.844 | 0.776 | 0.861 | 0.884 | 0.669 | 0.825 | 0.8143
DAE [4] 0.894 | 0.999 | 0.792 | 0.851 | 0.888 | 0.819 | 0.944 | 0.922 | 0.740 | 0.917 | 0.8766
VAE [6] 0.997 | 0.999 | 0.936 | 0.959 | 0.973 | 0.964 | 0.993 | 0.976 | 0.923 | 0.976 | 0.9696
Pix CNN [26] | 0.531 | 0.995 | 0.476 | 0.517 | 0.739 | 0.542 | 0.592 | 0.789 | 0.340 | 0.662 | 0.6183
GAN [27] 0.926 | 0.995 | 0.805 | 0.818 | 0.823 | 0.803 | 0.890 | 0.898 | 0.817 | 0.887 | 0.8662
AND [1] 0.984 | 0.995 | 0.947 | 0.952 | 0.960 | 0.971 | 0.991 | 0.970 | 0.922 | 0.979 | 0.9671
AnoGAN [23] | 0.966 | 0.992 | 0.850 | 0.887 | 0.894 | 0.883 | 0.947 | 0.935 | 0.849 | 0.924 | 0.9127
DSVDD [19] | 0.980 | 0.997 | 0.917 | 0.919 | 0.949 | 0.885 | 0.983 | 0.946 | 0.939 | 0.965 | 0.9480
OCGAN 0.998 | 0.999 | 0.942 | 0.963 | 0.975 | 0.980 | 0.991 | 0.981 | 0.939 | 0.981 | 0.9750




4 Conclusion

» First we restricted the latent space to be bounded and forced latent
projections of in-class population to be distributed evenly in the latent
space using a latent discriminator.

« Then, we sampled from the latent space and ensured using a visual
discriminator that any random latent sample generates an image from
the same class.

 Finally, in an attempt to reduce false positives we introduced an
informative-negative mining procedure.



Dataset

® Cifar-10
« P: ‘airplane’, ‘automobile’, ‘ship’ and ‘truck’
« N: ‘bird’, ‘cat’, ‘deer’, ‘dog’, ‘frog’ and ‘horse’
* Network: (32%32*3)-[C(3*3,96)]*2-C(3%*3,96,2)-[C(3*3,192)]*2-C(3%3,192,2)-C(3%3,192)-
C(1*1,192)-C(1*1,10)-1000-1000-1

® MNIST
 P:0,2,4,6,8

* N:1,3,5,7,9
» Network: 784-300-300-300-300-1

® 20NewsGroup
« P:‘alt’, ‘comp.’, ‘misc.” and ‘rec.’
* N:‘sci.’, ‘soc.” and ‘talk.’
» Network: d-avg_pool(word_emb(d,300))-300-300-1



test loss
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Active learning: add sample and train model till convergence

QueI S’ aaPU: add sample after every epoch

Query strategy: uncertainty & random
Batch size: 20
Dataset: 20NewsGroup
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