Reinforcement Learning with Human Teachers: Evidence of Feedback and Guidance with Implications for Learning Performance

Andrea L. Thomaz and Cynthia Breazeal MIT Media Lab alockerd@media.mit.edu, <u>cynthiab@media.mit.edu</u>

AAAI-2006

Introduction

- Robert learn by interaction
- Human provide reward signal
- Does people use reward only about past actions? Or as future guidance?

Experimental Platform: Sophie's Kitchen

Agent: Sophie Objects: 面粉, 鸡蛋, 调羹, 碗和 托盘 Goal: 烘焙蛋糕

MDP

Location set: Shlef, Table, Oven (烤箱), Agent(the agent in the center surrounded by a shelf, table and oven)

Action space: GO left or right, PICK-UP, PUT-DOWN, USE(将面粉倒入碗中)

Interactive Reward Interface

- Human can provide a reward r = [-1, 1].
- The user receives visual feedback enabling them to tune the reward signal before sending it to the agent
- Can reward the state of a particular object instead the whole state.

Experiment

How do human use the reward?

18 paid participants

- Send positive message or negative
- Click on an object, this tells Sophie your message is about that object.

Result

Each player's %Object Rewards about the last object used.

Algorithm

Algorithm 1 Q-Learning with Interactive Rewards:

s =last state, s' =current state, a =last action, r =reward

- 1: while learning do
- 2: a = random select weighted by Q[s, a] values
- 3: execute a, and transition to s' (small delay to allow for human reward)
- 4: sense reward, r
- 5: update values:

 $Q[s,a] \gets Q[s,a] + \alpha(r + \gamma(max_{a'}Q[s',a']) - Q[s,a])$

6: end while

Algorithm 2 Interactive Q-Learning modified to incorporate interactive human guidance in addition to feedback.

- 1: while learning do
- 2: while waiting for guidance do
- 3: **if** receive human guidance message **then**

$$g = guide-object$$

- 5: end if
- 6: end while
- 7: if received guidance then
 - a = random selection of actions containing g

9: **else**

4:

8:

10:

a = random selection weighted by Q[s, a] values

11: end if

- 12: execute a, and transition to s' (small delay to allow for human reward)
- 13: sense reward, r
- 14: update values:

 $Q[s, a] \leftarrow Q[s, a] + \alpha(r + \gamma(max_{a'}Q[s', a']) - Q[s, a])$

15: end while

Experiments-Expert Data

1. No guidance: feedback only and the trainer gives reward after every action.

2. Guidance: has both guidance and feedback available;

Table 1: An **expert** user trained 20 agents, following a strict best-case protocol; yielding theoretical best-case learning effects of guidance. (F = failures, G = first success).

Measure	Mean	Mean	chg	t(18)	р
	no guide	guide			
# trials	6.4	4.5	30%	2.48	.01
# actions	151.5	92.6	39%	4.9	<.01
# F	4.4	2.3	48%	2.65	<.01
# F before G	4.2	2.3	45%	2.37	.01
# states	43.5	25.9	40%	6.27	<.01

Experiments-Non-Expert Data

You can direct Sophie's attention to particular objects with guidance messages. Click the right mouse button to make a yellow square, and use it to help guide Sophie to objects, as in 'Pay attention to this!'

Table 2: **Non-expert** players trained Sophie with and without guidance communication and also show the positive learning effects of guidance. (F = failures, G = first success).

Measure	Mean	Mean	chg	t(26)	р
	no guide	guide			
# trials	28.52	14.6	49%	2.68	<.01
# actions	816.44	368	55%	2.91	<.01
# F	18.89	11.8	38%	2.61	<.01
# F before G	18.7	11	41%	2.82	<.01
# states	124.44	62.7	50%	5.64	<.001
% good states	60.3	72.4		-5.02	<.001

Conclusion

- People try to guide a agent given reward channel.
- We modify the algorithm to include channel of guidance.
- It improves several dimension of learning
 - the speed of learning,
 - the efficiency of state exploration,
 - and a significant drop in the number of failed trials