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Definition 1 (Minimax expected risk) 7The minimax expected excess risk of learning

a hypothesis class H on a sample of size (£, u) over the set of admissible distributions P is
the expected excess risk of the best algorithm A under the worst distribution P:

L(0,u,H,P) = inf sup Eq_ peew |(R(A(S)) — RP,H)+] . (1)
A pep

Definition 2 (SL and SSL learnability) We say that a problem (H,P) is SL learnable

if L(¢,0,H,P) converges to zero as £ goes to infinity. We say that a problem (H,P) is SSL

learnable if, for some function v : N — N, L({,u(f),H,P) converges to zero as ¢ goes to
infinity.

if there exists ¢;,¢, € R7%,¢c,9(1) < f(D) < c,g9(1),we say f has rate g



Definition 3 (Unlabeled data helps) We say that unlabeled data helps to learn H
over the set of admissible distributions P if there exists some u : N — N such that

lim ianSSL suppep Eg.peeue) [(R(ASSL(S)) - R’H)-|-]

= 0. 2
3% " infay, suppep Egpe [(R(AsL(S)) — R, ] @

Definition 4 (Unlabeled data helps non-uniformly) We say that unlabeled data helps

non-uniformly to learn H over the sequence of distributions (Py)een if there exists some
u: N — N such that

lim ianSSL SU_pper}p;;.E ESNP(E,U,(E)) [(R(ASSL(S)) — R’H)-|-]
£—00 iIlfASL Suppep!2 ESNPE [(R(ASL(S)) — RH)+]

~0. (3)



Definition 5 (Unlabeled data helps weakly non-uniformly) We say that unlabeled
data helps weakly non-uniformly to learn H over the sequence of distributions (Py)een with
Pe C Pyyq if there exists some u : N — N such that

lim ianSSL SU_ppErpfg ]ESNP(E,u(E)) [(R(ASSL(S)) — R’H)+]

' =0. (4)
{—00 lansL SUPPEUiEN 2 ESNPE [(R(ASL(S)) o R’H)—|—]

Definition 6 (Knowing the marginal helps) We say that knowing the marginal helps
to learn H owver the set of admaissible distributions P if

lim ianSSL SUPpep IE’SNPE [(R(ASSL(Sa PX)) — R’H)+]
{— 00 iangL SUP pcp ESNPE [(R(ASL(S)) — RH)+]

~0. (5)

It has been shown e.g. by Seeger (2000) that, if the parameters determining marginal and labeling are independent,
unlabeled data is not useful in estimating the parameters that determine the labeling, it may still be helpful in finding
a low-risk classifier.



Theorem 7 If a problem (H,P) is unlearnable in the SL setting, i.e. L(£,0,H,P) does
not converge to 0, then it is also unlearnable in the SSL setting, i.e. for any u : N — N,
L(¢,u(l),H,P) does not converge to 0.

Proof To avoid cluttered notation, we here omit H and P from the error rates. We prove
that if there is some w such that lim L(¢,u(¢)) = 0 then lim L(¢,0) = 0. Indeed, L(¢,0) > 0
by definition and for any ¢ and u, L({4u(¢),0) < L(¢,u(¥)), since an SL algorithm can simply
opt to forget the labels of u(¢) labeled samples and treat them as unlabeled. Furthermore,
L(¢,0) is non-increasing since an algorithm receiving an ¢ + 1 sample can always ignore an

example, hence L(£,0) < L({ +u(£),0) < L(£,u(?)). |



Definition 8 We say that a family of probability distributions P is rich for a class H if
there exist hypotheses h,h' € H and marginal Px such that Px({z : h(xz) # h'(x),h(xz) =
0) # Px({z : h(z) # I/ (x),h(z) = 1}), and for every a € (0, 3), P contains P, and P_,
which consist of Px paired with labeling functions n, and n—, that agree with h where
h =h' and take values § + o and § — o respectively where h # I'.

Theorem 9 Let H be a class of finite VO dimension. Then for every set of probability

distributions P that is rich for H, knowing the marginal does not help to learn H over the
set of admissible distributions P.



Since ‘H has finite VC dimension, the SL rate of (H,P) is upper-bounded by %. Showing
that the rate of any algorithm with access to the marginal distribution is lower-bounded by

ﬁ proves that both the SL and SSL rates are of order ﬁ, since the SSL rate cannot be

slower than the SL rate. Let C' := {x : h(z) # h'(x)}, let ¢ := Px(C) and ¢ := Px({z: x €
C' A h(x) = 1}). By requirement, ¢ # ¢/2. Without loss of generality, assume ¢ > ¢/2. A
simple calculation shows that

1 + 2«
KL(P:, Pt,) = 2clalog (1 — 2&) : (11)
Using ,
1+ x
=1 log(1 12
- +1_$ and og(l+z) <x Vx>0, (12)
we find that

4o

1 —2a (13)

KL(P:, P* ) < 2cla



For a < i, this can be bounded by
KL(Py, P,) < 16¢cla”. (14)

(Tsybakov, 2009, Theorem 2.2, (i)) shows that for any hypothesis test that decides between
P, and P_,, the probability of choosing incorrectly is lower-bounded by 15—”’, where a >

TV(P,, P-,) and TV denotes the total variation distance. Since

2

the probability of a test choosing incorrectly between P, and P_, can be lower-bounded by

1 — V8cla?
5 .

1
TV(PéuPﬁa) < \/_ KL(Péu Pin:): (15)

(16)




Since P, and P_, have the same marginal distribution, this probability is independent
of whether or not the marginal is known to the learner. If P, is the true underlying
distribution, any hypothesis that does not majorly label C' with 1 incurs an excess risk of
at least 2a(c’ — ¢/2). Likewise, if P_, is the true| underlying distribution, any hypothesis
that does not majorly label C' with 0 incurs an excess risk of at least 2a(c — ¢/2). Let

o = \/ﬁ. Then Equation (16) shows that the probability of choosing incorrectly between

P, and P_, can be lower-bounded by %, and the expected excess risk of any algorithm can
be lower-bounded by
2 —c 1 1

16v2e v Vi

(17)



Example 1 Let X = {z1,x2} and H = {0,1}*. Then every marginal dz’strz’butz’on Px on
X can be parameterized by 3 € ( 5 2) with Pﬁ( 1) = 2 + 3, Pg( 2) = 5 — 3. Now, for
each Pﬁ, restrict P to contain only those P, denoted by P*?, such that P(Y = 1|zy) =
L+ a = P(Y = 0|zz) with a8 > 0, i.e. restrict the possible labelings such that the Bayes
classifier assigns opposite labels to the two points, and labels with 1 the point that is seen
more often.

In Example 1, the Bayes classifier is completely determined by the marginal distribution.
As such, this is an example where we can observe improvements via idealistic SSL, i.e.
knowing the marginal helps (Definition 6): an SSL algorithm that knows the marginal has

expected excess risk zero, while the SL rate of learning (#, P) is %.



Example 3 Let X = {z1,25} and H = {0,1}*. Now, restrict P to those distributions
such that P(Y = 1|x;) = Px(x;). That is, the Bayes classifier labels x1 and xo with opposite
labels, the noise of each labeling is equal to the noise in choosing x;, and the point that is
less likely to be seen 1s the one which the Bayes classifier labels with 0.

Let A be the algorithm that disregards all labels, assigns 1 to the x; that appears more

often in the sample and 0 to the x; that appears less often. The expected excess loss of

this algorithm is bounded by \/*‘3"‘17“(*‘5’)’ so the SSL minimax rate for u(¢) = ¢* is at least

f(¢) = %, the SSL minimax rate for u(¢) = ¢* is at least f(¢) = % and the SSL minimax
rate for u(¢) = exp(¥) is exponential. The SL rate of (H,P) is —=.> Proofs of lower and

upper bounds can be found in Appendix B.

N



Proposition 11 If the SL rate of (H,[P) is £=% with o > 0, and unlabeled data helps for
u: N — N, then “’fo) — 00, i.e. u must grow superlinearly.

Proof Since L({+u(f),0) < L(l,u(?)), Lg(fg?) — 0 implies that L(Eﬂtg(g))’o) > 0. Applying

these conditions to L(¢,0) = ¢~ yields the result. |
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