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Introduction

* A large number of environment samples are needed before the
agent reaches a desirable level of performance.

* Learning from demonstrations (LfD) can directly derive behavior,
out it can not guarantee the quality of demonstrations, which
nurts the learning behavior.

* We propose to use demonstrations to shape rewards in the RL
problems.



Preliminaries - Reinforcement learning

* Q-learning

Q(s,a) « Q(s,a) + ad

* TD-error

5= R(s,a,8') + ymax Q(s', ') — Q(s, a)



Preliminaries - Reward shaping

Modifying the reward function may make the agent coverge to suboptimal policies.

* The extra reward F Is added to th.e environment's reward R to
create a new composite reward signal:

Rp(s,a,s') = R(s,a,s") + F(s,a,s’)

* Define potential function ®:S — R, and take F as follows, the total
policies remain unchanged.

Ng et al, 1999 F(S, a, S,) — ’)/(I)(S,) (I)( )
) —

/

Wiewiora et al, 2003 F(S, a, S,, CL,) — ")/(I)(S/, a (I)(S CL)



Preliminaries - Reward shaping  (Ng et al, ICML, 1999)

(Sl —> S2 —> S3 v —> Sn —> Sl .« o ) “distracted” problem

F(s,,a,,s,)+-+F(s_ s )+ F(s ,a,,s)>0

ZRF(S,CZ,S') = ZR(S,CZ,S')-I—ZF(S,LZ,S')
=Y R(s,a,s")+ > yD(s")—D(s)

maXZRF (s,a,s') < max ZR(S, a,s')



Shaping RL using Demonstrations

* Key Idea:
* We want the potential ®°(s,a) of a state-action pair (s, a) to be high when
action a was demonstrated in a state s similar to s

* We want the potential to be low when the action was not demonstrated
In the neighbourhood of s.

* Similarity:

g(s, 5%, %) = e(~3(s=sHTE T (5=s")

* where 2 is a covariance matrix. If two state-action pairs dlffer In the
action, their similarity is 0, and the similarity is 1 when s =s*



Shaping RL using Demonstrations

* The potential function:

O (s,a) = max g(s, 7, %)

* This potential function can then be integrated in two ways into the
learning process

1. By creating a shaping function and adding it to the base reward.

FP(s,a,s,d)=~®"(s,d) — ®"(s,a)

2. Initializing the Q function with potential function

Qo(s,a) = P (s,a)



Shaping RL using Demonstrations - Example: Blind Cliffwalk

{(19 R)a (29 R)a T (l/l — 19 R)a (na L)}

QQJ o o QO(Sjaj) — (I)D(S’a,)

R=1

{QO(LR) :19Q0(29R) :19°'°3Q0(n_19R) :laQO(naL) :1}

This initialization allows the agent to immediately use the bias in action selection.



Shaping RL using Demonstrations - Example: Blind Cliffwalk
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Experiments

* Environments l
* Cart Pole
* Super Mario Bros game
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Experiments - CartPole

Average performance during learning

1000r

8
]

3
o

&
]

8
]

Varying demonstration length in Cart Pole
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Experiments - Mario

Single demonstration by suboptimal RL agent
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Experiments - Mario

Single demonstration by different demonstrators in Mario Single demonstration by different demonstrators in Mario
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Figure 4: The effect the type of demonstrator has on RLfD and L{D in Mario (RL performance provided for comparison).
Figure (a) shows average performance over 1000 learning episodes, an indication of the speed of learning (excluding L{D), (b)
shows the final performance (after 1000 learning episodes) of the policies proposed by each technique. RLfD (shaping) always
outperforms or matches the performance of other techniques.
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