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Graph-based SSL for Vertex Labels
QO labeled () inferred

Given the labels of a subset of vertices, and our goal is to find a label —
assignment of the unlabeled vertices such that the labels vary smoothly across .
neighboring vertices. ’
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E={E,....E,...,Em} The incidence matrix B is defined as O
1, Srz(i,j),k:i,i<j -
Bkr:<_19 STE(iaj)a k:ja l<]
: -1.0 0.0 +1.0
0, otherwise.

This notion of smoothness can be defined via a loss function of the form IIBTy||2 = Z(i,j)eg(yi — yj)2

IBTy||? =yTLy -=——ssssss) L =BBT

y" = arg min IBTylI? sty =0, VVieVh



Graph-Based SSL for Edge Flows e

- labeled = inferred
problem
The edge flows over a network can be represented with a vector f, where > N /\\
f. > 0 if the flow orientation on edge r aligns with its reference orientation O— 0
and f,. < 0 otherwise. In this sense, we are only accounting for the net / \ /4
flow along an edge. O @)
assumption thickness : flow magnitude

To impose a flow conservation assumption for edge flows, we consider
the divergence at each vertex, which is the sum of outgoing flows minus the
sum of incoming flows at a vertex.
(Bf); = Z f — Z £

Ere&: Er=(i,))i<] Ere€: E,=(),0),j<i

loss

To create a loss function for edge flows that enforces a notion of flow-conservation, we use the sum-of-
squares vertex divergence:

|Bf||* = fTBTBf = fTL,f.
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. . - |abeled - inferred
However, unlike the case for smooth vertex labels, requiring fTL.f = 0 HIHCHTE
is actually under-constrained, i.e., even when more than one edge is labeled, O
many different divergence-free edge-flow assignments may exist that induce - \ / ' \
zero loss. A‘A O o o
f* = arg min IBf||? + A% - ||f]|? ]
thickness : flow magnitude
S.t. fr — fr, V((_?)r c SL
Computation

Let £0 be a trival feasible point where f° = £, if r € €L and f” = 0 otherwise.

Denote the set of indices for unlabeled edgesas &Y = {6U, SE, - 851[}}

We define the expansion operator ® as a linear map from R™ to R™ givenby @, =1ifg. =&Y
and 0 otherwise. Let fV € R™" be the edge flows on the unlabeled edges.



The original problem can be converted to a linear least-squares problem:

f* = arg min IBf]|? + A% - ||f]|? 2

B®
fU _

‘ fU* = arg min

—Bf0]

st. f,=f-, V&, € &L

Any feasible point can be written as f° + ®fY

The least-squares problem can be solved with iterative methods such as LSQR or LSMR.

LSMR: An lIterative Algorithm for Sparse Least-Squares Problems.(SIAM2017)
LSQR: An Algorithm for Sparse Linear Equations and Sparse Least Squares. ACM TOMS (1982).



Spectral Graph Theory Interpretations

The spectral decomposition of the graph Laplacian matrixis L= UAUT. Because L = BBT the orthonormal

basis U e R™" for vertex labels is formed by the left singular vectors of the incidence matrix

Y. € R™ ™M js the diagonal matrix of ordered singular values with m — n columns of zero-padding on the right

the right singular vectors V € RX s an orthonormal basis for edge flows.

The divergence-minimizing objective can be rewritten in terms of the right singular vectors of B

Let p=VTf € R™ represent the spectral coefficients of f expressed in terms of the basis V.,

f* = argmfinannz + A2 IF? st £ =1, V&, € &L



" = V- argmin (Vp)TBTB (Vp) + A% - (Vp)T(Vp) [

= |abeled =9 inferred
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A thickness : fl itud
St (Vp)r _ fr, V(Sr c SL’ S ickness : flow magnitude )

By construction V is a complete orthonormal basis for the space of edge flows. This space can
be decomposed into two orthogonal subspaces.

The first subspace is the cut-space R = im(BT) spanned by the singular vectors associated with

nonzero singular values.

The space R is also called the space of gradient flows, since any vector may be written as BTy,

Y is a vector of vertex scalar potentials that induce a gradient flow.




The second subspace is the cycle-space C = ker(B) spanned by the remaining right singular vectors V

associated with zero singular values. Note that any vector f € (C corresponds to a circulation of flow, and

will induce zero cost in the loss function.
u1 u9 us U4 U5 Ug ury

Let Uy, O, Vg atriple of a left singular i I I T ] )I i -
a /.:'\ RN /k'}\ p . ) .

vector, singular value, and right singular o oo oo oo o e o o

VeCtO r. \O/ \O/ D/ ., * e \O{ \O/ \O/ _1 ‘0

Oa 2.18 1.89 1.73 1.51 1.41 0.60 0.00  0.00

ugc Lu, = o-g{ provide a notion of

“unsmoothness” of basis vector U representing \i/ \I/ \I/ \ / \i/ \I/ 1
vertex labels, A AN /I

(/ \C O/ \ﬁ a k O Q > O \g (;/ \\ o//k \}’.) o/{\f'
\o/ \o/ \\o/ L\a/o \o/ \‘o/ \\o/ \/)

L

v; Le v = 0'02[ gives the sum-of-squares
Vi Vo V3 V4 V5 Vg V7 Vs

divergence of basis vector V,, representing Cycle-space

Cut-space R = im(BT) C = ker(B)

edge flows.



LEMMA 2.1. Assume the ground truth flows are divergence-free.
Then as A — 0, the solution of Eq. (8) can exactly recover the ground
truth from some labeled edge set E* with cardinalityc = m — n + 1.

f*=V.arg mpin (Vp)TBTB (Vp) + A% - (Vp)T(Vp)

=V-argminp” (ETE+ 4% -1)p st. (Vp), = £y, V&, € &L

, o + A2
=V argmpm)t2 - Z aﬂz P2

(04

Recall that p¢ € RE are the spectral coefficients of a basis V> in the cycle-space, then the ground truth

A

edge flows can be written as f = Vepe
On the other hand, in the limit /1 — () the spectral coefficients of basis vectors with non-zero singular values

have infinite weights and are forced to zero.

Therefore, by choosing the set of labeled edges corresponding to c = m —n + 1 linearly independent rows

A

from V>, the ground truth f s the unique optimal solution.



THEOREM 2.2. Let VLC denote c linearly independent rows of the
V¢ that correspond to labeled edges. If the divergence-free edge flows
f are perturbed by 0, then as A — 0, the reconstruction error of the
proposed algorithm is bounded by [0} (V )+ 1] - [|9][.

Il’lll’l

5L
5U

fL
fU

Further, the reconstructed edge flows are given by VC(V )~ 1(fL + 5L)

The ground truth edge flows can be written as f‘ —f+ 5=

Therefore, we can bound the norm of the reconstruction error as follows:

IVe(VE) T (" +85) = (F +8)]



SEMI-SUPERVISED LEARNING RESULTS

Minnesota road network n = 2642,m =3303 US power grid network from KONECT n =4941,m = 6593
The water irrigation network of Balerma city An autonomous system network n =520,m = 1280
n =447 m =454

Create synthetic flows with spectral coefficients for each basis vector that are inversely proportional to
the associated singular values

b
Pa = e b=0.02¢=0.1

Performance Measurement and Baselines

E[(X — px)(Y — py)) E|(X — px )(Y — py)]

p(X,Y) = - =
X0y VI (X = px)? /S0y (Y — v )?

Pearson correlation coefficient



First, the ZeroFill baseline simply assigns 0 edge flows to all unlabeled edges.

Second, the LineGraph baseline uses a line-graph transformation of the network and then applies

standard vertex-based SSL on the resulting graph.

The LineGraph approach performs no better than ZerokFill.
This should not be surprising, since the LineGraph
approach does not interpret the sign of an edge flow as an
orientation but simply as part of a numerical label

In our first set of experiments, the network topology
comes from real data, but we use synthetic flows to
demonstrate our method.
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Information Flow Networks

songs Artists
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Even though the flows are not physical, FlowSSL method still outperforms the baselines.



Two active learning algorithms

= [o.1 (V) +1]- [I8]

min

one strategy for selecting &L is to choose mL rows from V) that maximize the smallest singular
value of the resulting submatrix. ~ This problem is known as optimal column subset selection (maximum

submatrix volume) and is NP-hard.

However, a good heuristic is the rank revealing QR decomposition (RRQR) [5], which computes

VII=Q[R R

I is a permutation matrix that keeps R1 well-conditioned.

This approach is mathematically similar to graph clustering algorithms that use RRQR to select
representative vertices for cluster centers.



Recursive Bisection (RB)

The intuition behind this heuristic is that edge flows on bottleneck-
edges, which partition a network, are able to capture global trends in

the networks’ flow pattern.

We start with an empty labeled set SL,a target number of labeled
edges mL, Next, we recursively partition the largest cluster in the

graph with spectral clustering and add every edge that connects the
two resulting clusters into gL
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“Similar methods have been shown to be effective in semi-supervised active learning for vertex labels,
in these cases, the graph is first clustered, and then one vertex is selected from each cluster.”

Label Selection on Graphs(NIPS2009)

While any other graph partitioning algorithm could be used and greedy recursive bisection
approaches can be sub-optimal.

How Good is Recursive Bisection?(SIAM1998)



y" = argmin | BTy||*
y
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