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Graph-based SSL for Vertex Labels

Given the labels of a subset of vertices，and our goal is to find a label 
assignment of the unlabeled vertices such that the labels vary smoothly across 
neighboring vertices.

The incidence matrix B is defined as

This notion of smoothness can be defined via a loss function of the form



Graph-Based SSL for Edge Flows

The edge flows over a network can be represented with a vector f, where 
f𝑟𝑟 > 0 if the flow orientation on edge 𝑟𝑟 aligns with its reference orientation 
and f𝑟𝑟 < 0 otherwise.      In this sense, we are only accounting for the net 
flow along an edge.

To impose a flow conservation assumption for edge flows, we consider 
the divergence at each vertex, which is the sum of outgoing flows minus the 
sum of incoming flows at a vertex.

To create a loss function for edge flows that enforces a notion of flow-conservation, we use the sum-of-
squares vertex divergence:

problem

assumption

loss



However, unlike the case for smooth vertex labels, requiring
is actually under-constrained, i.e., even when more than one edge is labeled, 
many different divergence-free edge-flow assignments may exist that induce 
zero loss.

Computation

Let 𝐟𝐟0 be a trival feasible point where 𝐟𝐟𝑟𝑟0 = 𝐟𝐟𝑟𝑟 if 𝑟𝑟 ∈ 𝜀𝜀𝐿𝐿 and 𝐟𝐟𝑟𝑟 = 0 otherwise.

Denote the set of indices for unlabeled edges as

We define the expansion operator 𝚽𝚽 as a linear map from ℝ𝑚𝑚𝑈𝑈 to ℝ𝒎𝒎 given by Φ𝑟𝑟𝑟𝑟 = 1 if 𝜀𝜀𝑟𝑟 = 𝜀𝜀𝑠𝑠𝑈𝑈

and 0 otherwise. Let 𝐟𝐟𝑈𝑈 ∈ ℝ𝑚𝑚𝑈𝑈 be the edge flows on the unlabeled edges.



The original problem can be converted to a linear least-squares problem:

Any feasible point can be written as

The least-squares problem can be solved with iterative methods such as LSQR or LSMR.

LSMR: An Iterative Algorithm for Sparse Least-Squares Problems.(SIAM2017)

LSQR: An Algorithm for Sparse Linear Equations and Sparse Least Squares. ACM TOMS (1982).



Spectral Graph Theory Interpretations

The spectral decomposition of the graph Laplacian matrix is Because the orthonormal

basis for vertex labels is formed by the left singular vectors of the incidence matrix

is the diagonal matrix of ordered singular values with m − n columns of zero-padding on the right

the right singular vectors is an orthonormal basis for edge flows.

The divergence-minimizing objective can be rewritten in terms of the right singular vectors of

Let represent the spectral coefficients of expressed in terms of the basis



By construction V is a complete orthonormal basis for the space of edge flows. This space can 
be decomposed into two orthogonal subspaces.

The first subspace is the cut-space spanned by the singular vectors associated with

nonzero singular values.

The space is also called the space of gradient flows, since any vector may be written as

is a vector of vertex scalar potentials that induce a gradient flow.



The second subspace is the cycle-space spanned by the remaining right singular vectors

associated with zero singular values. Note that any vector corresponds to a circulation of flow, and

will induce zero cost in the loss function.

Let a triple of a left singular

vector, singular value, and right singular 
vector.

provide a notion of

“unsmoothness” of basis vector representing

vertex labels,

gives the sum-of-squares

divergence of basis vector representing

edge flows.



Recall that are the spectral coefficients of a basis in the cycle-space, then the ground truth
edge flows can be written as

On the other hand, in the limit the spectral coefficients of basis vectors with non-zero singular values

have infinite weights and are forced to zero.

Therefore, by choosing the set of labeled edges corresponding to 𝑐𝑐 = 𝑚𝑚 − 𝑛𝑛 + 1 linearly independent rows

from the ground truth is the unique optimal solution.



The ground truth edge flows can be written as

Further, the reconstructed edge flows are given by

Therefore, we can bound the norm of the reconstruction error as follows:



SEMI-SUPERVISED LEARNING RESULTS

Minnesota road network n = 2642,m =3303 US power grid network from KONECT n = 4941,m = 6593

The water irrigation network of Balerma city

n = 447,m = 454

An autonomous system network n = 520,m = 1280

Create synthetic flows with spectral coefficients for each basis vector that are inversely proportional to 
the associated singular values

Performance Measurement and Baselines

Pearson correlation coefficient



First, the ZeroFill baseline simply assigns 0 edge flows to all unlabeled edges.

Second, the LineGraph baseline uses a line-graph transformation of the network and then applies 
standard vertex-based SSL on the resulting graph.

The LineGraph approach performs no better than ZeroFill. 
This should not be surprising, since the LineGraph
approach does not interpret the sign of an edge flow as an 
orientation but simply as part of a numerical label

In our first set of experiments, the network topology 
comes from real data, but we use synthetic flows to 
demonstrate our method.



Learning Real-World Traffic Flows



Information Flow Networks

Even though the flows are not physical, FlowSSL method still outperforms the baselines.



Two active learning algorithms

one strategy for selecting is to choose rows from that maximize the smallest singular

value of the resulting submatrix. This problem is known as optimal column subset selection (maximum

submatrix volume) and is NP-hard.

However, a good heuristic is the rank revealing QR decomposition (RRQR) [5], which computes

is a permutation matrix that keeps well-conditioned.

This approach is mathematically similar to graph clustering algorithms that use RRQR to select 
representative vertices for cluster centers.



Recursive Bisection (RB)

The intuition behind this heuristic is that edge flows on bottleneck-
edges, which partition a network, are able to capture global trends in 
the networks’ flow pattern.

We start with an empty labeled set
Next, we recursively partition the largest cluster in the

a target number of labeled

edges
graph with spectral clustering and add every edge that connects the
two resulting clusters into





Label Selection on Graphs(NIPS2009)

“Similar methods have been shown to be effective in semi-supervised active learning for vertex labels,
in these cases, the graph is first clustered, and then one vertex is selected from each cluster.”

While any other graph partitioning algorithm could be used and greedy recursive bisection 
approaches can be sub-optimal.

How Good is Recursive Bisection?(SIAM1998)



cut-space, and cycle space

Pearson correlation coefficient LineGraph

ZeroFill RRQR

Recursive Bisection 
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