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represent observed relational data as a graph

The Mixed Membership Stochastic Blockmodel

maps pairs of nodes to values, that is, edge weights.

The data can be thought of as a directed graph.

We assume K factions, that is, latent groups, exist in the monastery, the observed network is generated 
according to distributions of group-membership for each monk and a matrix of group-group interaction 
strength.

In analyzing this data, the goal is to determine the social structure within the monastery.

Measure a collection of sociometric relations among a group of monks by repeatedly asking questions 
such as “whom do you like?” and “whom do you dislike?” to determine asymmetric social relationships 
within the group.



Notations

Each monk is associated with a randomly drawn vector for monk

denotes the probability of monk belonging to group

That is, each monk can simultaneously belong to multiple groups with different degrees of affiliation 
strength.

The probabilities of interactions between different groups are defined by a matrix of Bernoulli rates

represents the probability of having a link between a monk from group and a monk from group

denotes the group membership of monk when he responds to survey questions about monk

denotes the number of monks in the monastery



The mixed membership stochastic blockmodel (MMB) posits that a graph

from the following procedure.

is drawn 





The two sets of latent group indicators are denoted by

Under the MMB, the joint probability of the data Y and the latent variables

in the following factored form

can be written 

This model generalizes to two important cases

First, multiple networks among the same actors can be generated by the same latent vectors. This 
may be useful, for instance, to analyze multivariate sociometric relations.

Second, in the MMB the data generating distribution is a Bernoulli, but B can be a matrix that 
parameterizes any kind of distribution.



Modeling Sparsity

Adjacency matrices encoding binary pairwise measurements are often sparse, that is, they contain
many zeros or non-interactions.

It is useful to distinguish two sources of non-interaction: 

 they maybe the result of the rarity of interactions in general.

 they may be an indication that the pair of relevant blocks rarely interact.

A good estimate of the portion of zeros that should not be explained by the blockmodel B reduces 
the bias of the estimates of its elements.

Thus, we introduce a sparsity parameter in the MMB to characterize the source of non-interaction.

we down-weight the probability of successful interaction to

The sparsity parameter can be estimated. Its maximum likelihood estimate provides the best data-
driven guess about the proportion of zeros that the blockmodel can explain.



Summarizing and De-Noising Pairwise Measurements

 First, MMB can be used to summarize the data,  

and the node-specific mixed memberships

in terms of the global blockmodel

, Second, MMB can be used to de-noise the data, in terms of the global blockmodel

and interaction-specific single memberships

,

In both cases the model depends on a small set of unknown constants to be estimated:

The likelihood is the same in both cases, although, the rationale for including the set of latent variables differs.



When de-noising, the are instrumental in estimating posterior expectations of each interactions

individually—a network analog to the Kalman Filter.

The posterior expectations of an interaction is computed as follows, in the two cases,

When summarizing data, we could integrate out the analytically; We choose to keep the

inference.



 the loyal opposition (whose members joined the monastery first)

 the young turks (who joined later on)

 the outcasts (who were not accepted in the two main factions)

Sampson spent several months in a monastery in New England

An Illustration: Crisis in a Cloister

 the waverers (who did not take sides).

https://blog.csdn.net/chieryu/article/details/51746554

Here, we use the following approximation to BIC to choose the number of groups in the MMB:

is the number of hyper-parameters in the model

is the number of positive relations observed.



The three panels contrast the different resolution of the original adjacency matrix of whom-do-like sociometric
relations (left panel) obtained in different uses of MMB.

If the goal of the analysis if to find a parsimonious summary of the data, the amount of relational information 
that is captured by in and leads to a coarse reconstruction of the original sociomatrix (central panel).

If the goal of the analysis if to de-noising a collection of pairwise measurements, the amount of relational 
information that is revealed by and leads to a finer reconstruction of the original
sociomatrix, relations in Are re-weighted according to how much they make sense to the model (right panel).



We can see the central role played by John Bosco and Gregory, who exhibit relations in all three groups, 
as well as the uncertain affiliations of Ramuald and Victor. (Amand’s uncertain affiliation, however, is not 
captured.)



Parameter Estimation and Posterior Inference

Two computational problems are central to the MMB:

 posterior inference of the per-node mixed membership vectors and per-pair roles

 parameter estimation of the Dirichlet parameters and Bernoulli rate matrix

We derive empirical Bayes estimates of the parameters and employ a mean-field approximation

scheme for posterior inference.

Posterior Inference

The posterior inference problem is to compute the posterior distribution of the latent variables given a 
collection of observations.



The normalizing constant of the posterior distribution is the marginal probability of the data, which 
requires an integral over the simplicial vectors

which is not solvable in closed form.

 mean-field variational methods

 expectation propagation

 Monte Carlo Markov chain sampling (MCMC)



We appeal to variational methods. The main idea behind variational methods is to first posit a 
distribution of the latent variables with free parameters, and then fit those parameters such that the 
distribution is close in Kullback-Leibler divergence to the true posterior.

The variational distribution is simpler than the true posterior so that the optimization problem can be 
approximately solved.

In the MMB, we begin by bounding the log of the marginal probability of the data with Jensen’s inequality

We have introduced a distribution of the latent variables We specify as the mean-field fully-factorized family

is a Dirichlet is a multinomial, are the set of free variational parameters 
that are optimized to tighten the bound.





Parameter Estimation

We compute the empirical Bayes estimates of the model hyper-parameters with a variational

expectation-maximization (EM) algorithm.

参数估计：最大似然估计（MLE），最大后验估计(MAP)，贝叶斯估计，经验贝叶斯(Empirical 
Bayes)与全贝叶斯(Full Bayes)

https://blog.csdn.net/lin360580306/article/details/51289543

Empirical Bayes, guides the posterior inference towards a region of the hyper-parameter space 
that is supported by the data.



Variational EM uses the lower bound in Equation 5 as a surrogate for the likelihood. To find a local optimum of 
the bound, we iterate between fitting the variational distribution.



A closed form solution for the approximate maximum likelihood estimate of does not exist

We use a linear-time Newton-Raphson method, where the gradient and Hessian are

The approximate MLE of

Finally, the approximate MLE of the sparsity parameter is
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