

Active Learning from Peers

Keerthiram Murugesan Jaime Carbonell School of Computer Science Carnegie Mellon University Pittsburgh, PA 15213 {kmuruges,jgc}@cs.cmu.edu

NIPS-2017

Introduction

Motivation

This paper addresses the challenge of learning from peers in an online multitask. Instead of always requesting a label from a human oracle, the proposed method first determines if the learner for each task can acquire that label with sufficient confidence from its peers.

- 1. Receive an example $x^{(t)}$ for the task k
- 2. If the task k is not confident in the prediction for this example, ask the *peers* or *related tasks* whether they can give a confident label to this example.
- 3. If the *peers* are not confident enough, ask the oracle for the true label $y^{(t)}$.

Symbolic meaning

 $\{(x_k^{(i)}, y_k^{(i)})\}_{i=1}^{N_k}$ K tasks, where the k-th task is associated with N_k training examples $\{w_k^*\}_{k \in [K]}$ The parameter of the model for *k*-th task $\ell_{kk}^{(t)*} = \left(1 - y^{(t)} \langle x^{(t)}, w_k^*
angle
ight)_+$ hinge losses on example $\left((x^{(t)}, k), y^{(t)}
ight)$ $\ell_{km}^{(t)*} = (1 - y^{(t)} \langle x^{(t)}, w_m^* \rangle)_{\perp}$ $h_k(x^{(t)}) = \langle w_k^{(t-1)}, x^{(t)} \rangle$ k-th task model's output for the received $x^{(t)}$ $\hat{p}_{kk} = \langle w_k^{(t-1)}, x^{(t)} \rangle$ and $\hat{p}_{km} = \langle w_m^{(t-1)}, x^{(t)} \rangle$

Method of Learning from Peers

Current task model`s confidence

 $|h_k(x^{(t)})|$ measure the confidence of the k-th task learner on this example

a Bernoulli random variable $P^{(t)}$ for the event $|h_k(x^{(t)})| \leq b_1$ with probability $\frac{b_1}{b_1 + |h_k(x^{(t)})|}$

Peers` task model`s confidence

a Bernoulli random variable $Q^{(t)}$ for the event $|h_m(x^{(t)})| \le b_2$ with probability b_2 b_2 $b_2 + \sum_{m \in [K], m \neq k} \tau_{km}^{(t-1)} |h_m(x^{(t)})|$

 τ_{km} relationship between tasks using the cross-task error l_{km}

$$\tau_{km}^{(t)} = \frac{\tau_{km}^{(t-1)} e^{-\frac{Z^{(t)}}{\lambda} \ell_{km}^{(t)}}}{\sum_{\substack{m' \in [K] \\ m' \neq k}} \tau_{km'}^{(t-1)} e^{-\frac{Z^{(t)}}{\lambda} \ell_{km'}^{(t)}}} \quad m \in [K], m \neq k$$

Adaptive Smoothed Online Multi-Task Learning NIPS-2016

Active Learning from Peers

Conventional Uncertainty

 $h_k(x^{(t)}) = \langle w_k^{(t-1)}, x^{(t)} \rangle$ Current task model's confidence

Peers`task model`s confidence

$$\tilde{p}^{(t)} = \sum_{m \neq k, m \in [K]} \tau_{km}^{(t-1)} \hat{p}_{km}^{(t)}$$
 and $\tilde{y}^{(t)}$

Update the model parameter *W* (when made a mistake) Update the task relationship au

Algorithm 1: Active Learning from Peers **Input :** $b_1 > 0$, $b_2 > 0$ s.t., $b_2 \ge b_1$, $\lambda > 0$, Number of rounds T 1 Initialize $w_m^{(0)} = \mathbf{0} \ \forall m \in [K], \boldsymbol{\tau}^{(0)}.$ **2** for t = 1 ... T do Receive $(x^{(t)}, k)$ Compute $\hat{p}_{kk}^{(t)} = \langle x^{(t)}, w_k^{(t-1)} \rangle$ Predict $\hat{y}^{(t)} = sign(\hat{p}_{kk}^{(t)})$ Draw a Bernoulli random variable $P^{(t)}$ with probability $\frac{b_1}{b_1 + |\hat{p}_{t+1}^{(t)}|}$ if $P^{(t)} = 1$ then Compute $\hat{p}_{km}^{(t)} = \langle x^{(t)}, w_m^{(t-1)} \rangle \, \forall m \neq k, m \in [K]$ Compute $\tilde{p}^{(t)} = \sum_{m \neq k, m \in [K]} \tau_{km}^{(t-1)} \hat{p}_{km}^{(t)}$ and $\tilde{y}^{(t)} = sign(\tilde{p}^{(t)})$ Draw a Bernoulli random variable $Q^{(t)}$ with probability $\frac{b_2}{b_2+|\tilde{n}^{(t)}|}$ end Set $Z^{(t)} = P^{(t)}Q^{(t)} \& \tilde{Z}^{(t)} = P^{(t)}(1 - Q^{(t)})$ Query true label $y^{(t)}$ if $Z^{(t)} = 1$ and set $M^{(t)} = 1$ if $\hat{y}^{(t)} \neq y^{(t)}$ Update $w_k^{(t)} = w_k^{(t-1)} + (M^{(t)}Z^{(t)}y^{(t)} + \tilde{Z}^{(t)}\tilde{y}^{(t)})x^{(t)}$ Update τ : z(t), (t)

$$\tau_{km}^{(t)} = \frac{\tau_{km}^{(t-1)} e^{-\frac{Z(t)}{\lambda} \ell_{km}^{(0)}}}{\sum_{\substack{m' \in [K] \\ m' \neq k}} \tau_{km'}^{(t-1)} e^{-\frac{Z(t)}{\lambda} \ell_{km'}^{(t)}}} \quad m \in [K], m \neq k$$
(1)

17 end

3

4

6

7

8

9

10

11

12

13

14

15

16

Theoretical Analysis

a theoretical mistake bound

$$\mathbb{E}\left[\sum_{t\in[T]} M^{(t)}\right] \leq \frac{b_2}{\gamma} \left[\frac{(2b_1+X^2)^2}{8b_1\gamma} \left(\|w_k^*\|^2 + \max_{m\in[K], m\neq k} \|w_m^*\|^2\right) + \left(1+\frac{X^2}{2b_1}\right) \left(\tilde{L}_{kk} + \max_{m\in[K], m\neq k} \tilde{L}_{km}\right)\right]$$

the expected number of label requests

$$\sum_{t} \frac{b_1}{b_1 + |h_k(x^{(t)})|} \frac{b_2}{b_2 + \max_{\substack{m \in [K] \\ m \neq k}} |h_m(x^{(t)})|}$$

Dataset

- Landmine Detection data
- Spam Detection data
- Sentiment Analysis data

Method baseline

Random

Independent: chooses the examples via selective sampling independently for each task

Method of this paper

PEERsum PEERone

$$\tilde{p}^{(t)} = \sum_{m \neq k, m \in [K]} \tau_{km}^{(t-1)} \hat{p}_{km}^{(t)} \text{ and } \tilde{y}^{(t)} = sign(\tilde{p}^{(t)})$$

 $b_1 = 1$ b_2 is tuned from 20 different values

Table 1: Average test accuracy on three datasets: means and standard errors over 10 random shuffles.

Models	Landmine Detection			Spam Detection			Sentiment Analysis		
	ACC	#Queries	Time (s)	ACC	#Queries	Time (s)	ACC	#Queries	Time (s)
Random	0.8905	1519.4	0.38	0.8117	753.4	8	0.7443	1221.8	35.6
	(0.007)	(31.9)		(0.021)	(29.1)		(0.028)	(22.78)	
Independent	0.9040	1802.8	0.29	0.8309	1186.6	7.9	0.7522	2137.6	35.6
	(0.016)	(35.5)		(0.022)	(18.3)		(0.015)	(19.1)	
PEERsum	0.9403	265.6	0.38	0.8497	1108.8	8	0.8141	1494.4	36
	(0.001)	(18.7)		(0.007)	(32.1)		(0.001)	(68.59)	
PEERone	0.9377	303	1.01	0.8344	1084.2	8.3	0.8120	1554.6	36.3
	(0.003)	(17)		(0.018)	(24.2)		(0.01)	(92.2)	

Figure 3: Average test set ACC calculated for different values of b_2 (left). A visualization of the peer query requests among the tasks in *sentiment* learned by PEERone (middle) and comparison of proposed methods against SHAMPO in parallel setting. We report the average test set accuracy (right).

Authors and related papers

Keerthiram Murugesan Jaime Carbonell

Adaptive Smoothed Online Multi-Task Learning	NIPS-2016
Self-Paced Multitask Learning with Shared Knowledge	IJCAI-2017
Multi-Task Multiple Kernel Relationship Learning	SDM-2017