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Few-shot learning by metric learning

Learn an embedding into a metric space where some simple (usually L2) metric 
is then used to classify instances of new categories 

Few-shot meta-learning (learning-to-learn)

The meta-learned classifiers are optimized to be easily fine-tuned on new few-
shot tasks using the provided small training data.

Generative and augmentation-based few-shot approaches

Either generative models are trained to synthesize new data based on few 
examples, or additional examples are obtained by some other form of transfer 
learning from external data.
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Intuition

The offset in feature space between a pair of same-class examples conveys 
information on a valid deformation. The deformation called “∆”

∆ =Close eyes
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Method

A model to capture the deformation between examples in the same class.

A model use the deformation AND an example X to generate a new example Y. 
The expected results is : The generated example Y is a deformation of the given 
example X. 
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Auto-encoder
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Training phase
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Keeping the dimension 
of Z small, we ensure 
that the decoder D 
cannot use just Z in 
order to reconstruct X.

This way, we regularize 
the encoder to strongly 
rely on the anchor 
example Y for the 
reconstruction
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Sample synthesis
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Testing

N-way k-shot : draw N random unseen categories, and draw k random samples 
from each category. 

we use our trained network to synthesize a total of 1024 samples per category 
based on those k examples. This is followed by training a simple linear N-class 
classifier over those 1024 · N samples, and finally, the calculation of the few-
shot classification accuracy on a set of M real (query) samples from the tested 
N categories.

sample test
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Feature extractor backbone only trained on the subset of training categories of the target dataset 
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Feature extractor backbone is a VGG16 backbone pre-trained on ImageNet. The unseen test 
categories were verified to be disjoint from the ImageNet categories
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Are we synthesizing non-trivial samples?
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Generated samples for 12-way one-shot. The two-dimensional embedding was 
produced by t-SNE. Best viewed in color.
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Are we synthesizing non-trivial samples?
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