A-encoder: an effective sample synthesis
method for few-shot object recognition

NIPS 2018

Eli Schwartz*!', Leonid Karlinsky*!,
Joseph Shtok!, Sivan Harary', Mattias Marder!, Abhishek Kumar!,

Rogerio Feris!, Raja Giryes” and Alex M. Bronstein®

'IBM Research Al
2School of Electrical Engineering, Tel-Aviv University, Tel-Aviv, Israel
3Departrruant of Computer Science, Technion, Haifa, Israel




=E

O1 Few-shot learning

02 The framework

03 Experiments



Few-shot learning

Test on
: . . unseen
Table 3: Summary of the datasets used in our experiments dataset
Fine Image  Total# | Seen | |Unseen
Dataset grained size images |classes | | classes
minilmageNet [42] X Medium 60K 80 20
CIFAR-100 [22] X Small 60K 80 20
Caltech-256 Object Category X Large 30K 156 50
Caltech-UCSD Birds 200 (CUB) [47] v Large 12K 150 50
Attribute Pascal & Yahoo (aPY) X Large 14K 20 12
Scene UNderstanding (SUN) v Large 14K 645 72
Animals with Attributes 2 (AWA?2) X Large 3TK 40 10
With many Only k
instances Instances

for k-shot



Few-shot learning

Few-shot learning by metric learning

Learn an embedding into a metric space where some simple (usually L2) metric
is then used to classify instances of new categories

Few-shot meta-learning (learning-to-learn)

The meta-learned classifiers are optimized to be easily fine-tuned on new few-
shot tasks using the provided small training data.

Generative and augmentation-based few-shot approaches

Either generative models are trained to synthesize new data based on few
examples, or additional examples are obtained by some other form of transfer
learning from external data.
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The framework

Intuition

The offset in feature space between a pair of same-class examples conveys
information on a valid deformation. The deformation called “A”

A =Close eyes
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The framework

Method

A model to capture the deformation between examples in the same class.

A model use the deformation AND an example X to generate a new example Y.
The expected results is : The generated example Y is a deformation of the given
example X.
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The framework

Auto-encoder A-encoder
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The framework
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The framework

Sample synthesis
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The framework

Testing

N-way k-shot : draw N random unseen categories, and draw k random samples
from each category.

Synthesis 1024
samples for each
class ;
sample N classes, Train test The rest
U;'::n » each one has »|  N-class »|  examplesin N
k samples classifier classes

we use our trained network to synthesize a total of 1024 samples per category
based on those k examples. This is followed by training a simple linear N-class
classifier over those 1024 - N samples, and finally, the calculation of the few-

shot classification accuracy on a set of M real (query) samples from the tested
N categories.




Experiment




Table 1: 1-shot/5-shot 5-way accuracy results

Experiment

Method | minilmageNet ~ CIFAR100 Caltech-256 CUB | Average
Nearest neighbor (baseline) | 44.1/55.1 56.1/68.3 51.3/67.5 52.4/66.0 51.0/64.2
MACO [19] 41.1/5823 - - 60.8 /75.0 -
Meta-Learner LSTM 43.4/60.6 - - 40.4/49.7 -
Matching Nets [42] 46.6 / 60.0 50.5/60.3 48.1/57.5 493/593 48.6/59.3
MAML [[10] 48.7/63.1 493 /5823 45.6/54.6 38.4/59.1 45.5/58.8
Prototypical Networks [38] | 49.4/68.2 - - - -

SRPN 55.2/69.6 - - - -
RELATION NET 57.0/71.1 - - - -
DEML+Meta-SGD [50] 585/71.3° 61.6/77.9° 622/795° 669/77.1° | 623/76.4
Dual TriNet [4] 58.1/769 1 634/7847 638/8057 69.6/84.1* | 63.7/80.0
A-encoder 58.7/73.6 65.9/80.1 63.9/84.7 69.9/82.5 64.6 / 80.2

¢ Model also trained on an external large-scale dataset

T Using word embedding trained on large corpus and applied to the label name

* Using human annotated class attributes

Feature extractor backbone only trained on the subset of training categories of the target dataset



Experiment

Table 2: 1-shot/5-shot 5-way accuracy with ImageNet model features (trained on disjoint categories)

Method AWA?2 APY SUN CUB

Nearest neighbor (baseline) | 659/84.2 579/76.4 72.7/86.7 58.7/80.2
Prototypical Networks 80.8/953 69.8/90.1 747/948 719/924
A-encoder 90.5/96.4 82.5/934 82.0/93.0 82.2/92.6

Feature extractor backbone is a VGG16 backbone pre-trained on ImageNet. The unseen test
categories were verified to be disjoint from the ImageNet categories



Are we synthesizing non-trivial samples?

Accuracy
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Experiment

Generated samples for 12-way one-shot. The two-dimensional embedding was
produced by t-SNE. Best viewed in color.



Experiment

Are we synthesizing non-trivial samples?
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