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Matching Networks 

Map from a (small) support set of k examples of 

input-label pairs 𝑆 = {(𝑥𝑖 , 𝑦𝑖)}𝑖=1
𝐾 to a classifier 𝐶𝑆(ො𝑥).

𝑆 → 𝐶𝑆 ො𝑥 𝑃 ො𝑦 ො𝑥, 𝑆 =෍

𝑖=1

𝑘

𝑎(ො𝑥, 𝑥𝑖)𝑦𝑖

𝑎 ො𝑥, 𝑥𝑖 =
𝑒𝑐(𝑓 ො𝑥 ,𝑔(𝑥𝑖))

σ𝑗=1
𝑘 𝑒𝑐(𝑓 ො𝑥 ,𝑔(𝑥𝑗))

Embedding functions f and g are appropriate neural networks to embed ො𝑥 and 𝑥𝑖
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双向LSTM



Closely related to metric learning, the embedding functions f and g act as a lift to feature 

space X to achieve maximum accuracy through the classification function described in 

𝑃 ො𝑦 ො𝑥, 𝑆 = σ𝑖=1
𝑘 𝑎(ො𝑥, 𝑥𝑖)𝑦𝑖.

differentiable nearest neighbor++

Embedding the elements of the set through a function which takes as input the full set 𝑆 in 

addition to 𝑥𝑖, i.e. 𝑔 becomes 𝑔(𝑥𝑖 , 𝑆). Thus, as a function of the whole support set 𝑆, 𝑔 can 

modify how to embed 𝑥𝑖.

Embedding the training examples: g is a bidirectional LSTM over the examples, more precisely, 

let 𝑔′(𝑥𝑖) be a neural network(e.g. a VGG or inception model).

𝑔 𝑥𝑖 , 𝑆 = ℎ𝑖 + ℎ𝑖 + 𝑔′(𝑥𝑖)

ℎ𝑖 , Ԧ𝑐𝑖 = LSTM(𝑔′ 𝑥𝑖 , ℎ𝑖−1, Ԧ𝑐𝑖−1) ℎ𝑖 , ശ𝑐𝑖 = LSTM(𝑔′ 𝑥𝑖 , ℎ𝑖+1, ശ𝑐𝑖+1)



Embedding the test example

Define a task T as distribution over possible label sets L

f is a an LSTM that processes for a fixed amount (K time steps) and at each point also attends 

over the examples in the training set. The encoding is the last hidden state of the LSTM.



one-shot learning is much easier if you train the network to do one-shot learning.

non-parametric structures in a neural network make it easier for networks to remember 

and adapt to new training sets in the same tasks.

Conclusion

An obvious drawback of our model is the fact that, as the support set S grows in size, the 

computation for each gradient update becomes more expensive

When the label distribution has obvious biases (such as being fine grained), our model 

suffers.



Learning Algorithms for Active Learning 

Task Description

support set 𝑆 ≡ {(𝑥, 𝑦)} evaluation set 𝐸 = {(ො𝑥, ො𝑦)}

𝑆𝑡
𝑢 = {(𝑥,∙)} denote the set of items in the support set whose labels are still unknown after t label queries      

𝑆𝑡
𝑘 = {(𝑥, 𝑦)} denote the items whose labels are known.

𝑆𝑡 denote the joint set of labeled and unlabeled items after t label queries. 

𝑅(𝐸, 𝑆𝑡 , 𝑠𝑡) denote the reward won by the model when predicting labels for the evaluation set.

𝑠𝑡 denote the control state of our model after viewing t labels.

𝑅(𝐸, 𝑆𝑡, 𝑠𝑡) ≡ σ( ො𝑥, ො𝑦)∈𝐸 log𝑝( ො𝑦| ො𝑥, 𝑠𝑡 , 𝑆𝑡) gives log-likelihood of the predictions 𝑝(ො𝑦| ො𝑥, 𝑠𝑡 , 𝑆𝑡) on the evaluation set.



𝜋(𝑆, 𝑇) indicates unrolling the model’s active learning policy 𝜋 for T steps on 

support set S, unrolling 𝜋 produces the intermediate states { 𝑆1, 𝑠1 , … , (𝑆𝑇 , 𝑠𝑇)}。



CONTEXT-[FREE|SENSITIVE] 

ENCODING

Denote the context-free encoding of item 𝑥𝑖 ∈ 𝑆 as 𝑥𝑖
′, and similarly define ො𝑥𝑖

′ for ො𝑥𝑖
′ ∈ 𝐸

The context-sensitive encoder produces an embedding 𝑥𝑖
′′ for each item 𝑥𝑖 ∈ 𝑆 based on the 

context-free embeddings 𝑥𝑗
′: ∀𝑥𝑗 ∈ S..

Model Architecture

𝑥𝑖
′′ = 𝑥𝑖

′ +𝑊𝑒[ℎ𝑖; ℎ𝑖]



READING

This module concatenates the embedding 𝑥′′ and label 𝑦𝑖 for the item indicated by the selection 

module, and linearly transforms them before passing them to the controller.



At each step t, the controller receives an input 𝑟𝑡 from the reading module which encodes the most 

recently read item/label pair. Additional inputs could take advantage of task-specific information

𝑠𝑡 = LSTM(𝑠𝑡−1, 𝑟𝑡)



SELECTION

At each step t, the selection module 

places a distribution 𝑃𝑡
𝑢 over all 

unlabeled items 𝑥𝑖
𝑢 ∈ 𝑆𝑡

𝑢, It then 

samples the index of an item to label 

from 𝑃𝑡
𝑢, and feeds it to the reading 

module.

𝑏𝑡
𝑖 = 𝑥𝑖

′′ ⊙𝑊𝑏𝑠𝑡

computes 𝑃𝑡
𝑢 using a gated, linear combination of features which measure controller-item similarity and item-

item similarity

[max|mean|min] cosine similarity to any (un)labeled item

𝑑𝑡
𝑖 𝑔𝑡 = 𝜎(𝑊𝑔𝑠𝑡) For each 𝑥𝑖

𝑢 ∈ 𝑆𝑡
𝑢, compute 𝑝𝑡

𝑖 = (𝑔𝑡 ⊙𝑑𝑡
𝑖)𝑇𝑤𝑝



𝑃 𝑎 =
𝑒
𝑞 𝑎
𝑇

σ𝑖=1
𝑛 𝑒

𝑞(𝑖)
𝑇

For each unlabeled 𝑥𝑖
𝑢, compute a set of attention weights over the labeled 𝑥𝑗

𝑘 ∈ 𝑆𝑡
𝑘 by 

applying a softmax to the  relevant cosine similarities, using 𝛾𝑡
𝑖 as a temperature for the softmax.

𝛾𝑡
𝑖 = exp((𝑥′′)𝑇𝑊𝛾𝑠𝑡)

The final fast prediction is formed by taking a convex combination of the labels 𝑦𝑗 for the 

labeled 𝑥𝑗
𝑘 ∈ 𝑆𝑡

𝑘 using the computed attention weights.

temperature



Training the Model

Optimize the parameters of our model using a combination of backpropagation and policy gradients.

For a clear review of optimization techniques for general stochastic computation graphs, see Schulman et 

al. (2016a).

Ԧ𝑆 denotes the set of intermediate states {(𝑆𝑡 , 𝑠𝑡)} generated by the model.

𝑅( Ԧ𝑆) denotes the sum of rewards received by the model while working on episode (𝑆, 𝐸)

Rather than using the gradients in Equation 5 directly, we optimize the model parameters using 

generalized Advantage Estimation (Schulman et al., 2016b), which provides an actor-critic approach 

for approximately optimizing the policy gradients in Equation 5.





We introduced a model that learns active learning algorithms end-to-end.

Our model leverages labeled instances from different but related tasks to learn a selection 

strategy for the task at hand, while simultaneously adapting its representation of the data and its 

prediction function.

Our goal was to move away from engineered selection heuristics towards strategies 

learned directly from data.

For a distribution of related tasks, our model jointly learns: a data representation, an item 

selection heuristic, and a prediction function.

Conclusion


