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Matching Networks
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Map from a (small) support set of k examples of
input-label pairs S = {(x;, y;)}i—, to a classifier Cs(%).

k
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e C(f(f):g (xi))
Cl(x »y X i) — k o cF®).g (xj)) Figure 1: Matching Networks architecture
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Embedding functions f and g are appropriate neural networks to embed X and x;
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Cy = tanh(We-hi—1,2¢] + bo)
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differentiable nearest neighbor++

Closely related to metric learning, the embedding functions f and g act as a lift to feature
space X to achieve maximum accuracy through the classification function described in

P(I%,8) = Tizy a(®, x)y:.

Embedding the elements of the set through a function which takes as input the full set S in
addition to x;, i.e. g becomes g(x;,S). Thus, as a function of the whole support set S, g can
modify how to embed x;.

Embedding the training examples: g is a bidirectional LSTM over the examples, more precisely,
let g’ (x;) be a neural network(e.g. a VGG or inception model).

g(x;,S) = hy + hy + g' (x;)

hi, ¢; = LSTM(g' (x;), hi—1, €i—1) hi, ¢; = LSTM(g'(x;), hi41, Cis1)



Embedding the test example

fisa an LSTM that processes for a fixed amount (K time steps) and at each point also attends
over the examples in the training set. The encoding is the last hidden state of the LSTM.

hi.cr = LSTM(f (&), [hk—1,7k—1]. Cl_1) (3)
hie = hi+ f'(2) (4)
S|
Fe—1 = Za.{hk_l._g(.z.’i,-_))_g(;r.i) (3)
1=1
a(hp—_1.9(x;)) = softmax(hi_,g(x;)) (6)

Define a task T as distribution over possible label sets L

0 = arg I]’lg.X ELNT ESNL,BNL Z 10% PQ (y‘ii’ S)
(z,y)EB



Conclusion

one-shot learning is much easier if you train the network to do one-shot learning.

non-parametric structures in a neural network make it easier for networks to remember
and adapt to new training sets in the same tasks.

An obvious drawback of our model is the fact that, as the support set S grows in size, the
computation for each gradient update becomes more expensive

When the label distribution has obvious biases (such as being fine grained), our model
suffers.



Learning Algorithms for Active Learning

Task Description

support set S = {(x,y)} evaluation set E = {(X,y)}

St = {(x,")} denote the set of items in the support set whose labels are still unknown after t label queries
SF = {(x, y)} denote the items whose labels are known.

S; denote the joint set of labeled and unlabeled items after t label queries.

s¢ denote the control state of our model after viewing t labels.

R(E, S, s;) denote the reward won by the model when predicting labels for the evaluation set.

R(E,St, st) = Xz9)eelogp(V1%, s¢, S) gives log-likelihood of the predictions p(¥|%, s, S¢) on the evaluation set.



naximi K K R(E. S:.
maximize s | Z (E, S, st)

(S, T) indicates unrolling the model’s active learning policy  for T steps on
support set S, unrolling m produces the intermediate states {(Sy, s1), ..., (S7,57)}0

i L .
E E |» R(S/ Si.s)+ R(E, St sr)

t=1
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Denote the context-free encoding of item x; € S as x;, and similarly define z; for X; € E

The context-sensitive encoder produces an embedding x;’ for each item x; € S based on the

context-free embeddings x;: Vx; € S..

x;' = x; + Welh;; hy]



READING
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This module concatenates the embedding x” and label y; for the item indicated by the selection
module, and linearly transforms them before passing them to the controller.



controller LSTM
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At each step t, the controller receives an input r; from the reading module which encodes the most
recently read item/label pair. Additional inputs could take advantage of task-specific information

S¢ = LSTM(St_l, T't)



SELECTION

At each step t, the selection module
places a distribution P} over all
unlabeled items x* € S¥, It then
samples the index of an item to label
from P}, and feeds it to the reading
module.
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computes P# using a gated, linear combination of features which measure controller-item similarity and item-

item similarity

i I
by = x;7 © Wpst

dt g = a(W,st)

[max|mean|min] cosine similarity to any (un)labeled item

For each x}* € S¥, compute p} = (g; © d})™w,



controller LSTM
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For each unlabeled x;*, compute a set of attention weights over the labeled x]‘-lc € S¥ by
applying a softmax to the relevant cosine similarities, using y} as a temperature for the softmax.

vi = exp((x") W,s,)

The final fast prediction is formed by taking a convex combination of the labels y; for the
labeled x}‘ € S¥ using the computed attention weights.



Training the Model

Optimize the parameters of our model using a combination of backpropagation and policy gradients.
For a clear review of optimization techniques for general stochastic computation graphs, see Schulman et
al. (2016a).

VoR(S. E.0) = (5)

—

E (Vg log p(S|(S, E)) {R(S)] + ng?(\g)).
p(S|(S.E))

S denotes the set of intermediate states {(S;, s¢)} generated by the model.

R(§) denotes the sum of rewards received by the model while working on episode (S, E)

Rather than using the gradients in Equation 5 directly, we optimize the model parameters using
generalized Advantage Estimation (Schulman et al., 2016b), which provides an actor-critic approach
for approximately optimizing the policy gradients in Equation 5.



Algorithm 1 End-to-end active learning loop (for Eq. 3)
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11:
12:
13:
14:
15:

# encode items in S with context-sensitive encoder
# and encode items in E with context-free encoder
S = {(&,9)}. S = {(x,)}, Sk = 0. E = {(3,9)}
fort=1...7T do

# select next instance

i +— SELECT(S{ ;.S . si_1)

# read labeled instance and update controller

(z;,9:) ¢ READ(S. 1)

st — UPDATE(s;_1,%;, Y;)

# update known / unknown set

Stk — Stk—l U {{Ii- ?}1)}

S Sy \ {(i. )}

# perform fast prediction

LY < FAST-PRED(S, S¥, SF. s4)
end for

16: # perform slow prediction

17:

LE + SLOW-PRED(E, S%, Sk, sr)

controller LSTM

— — o —»
/ Reward
0=Uooe % b

read —»| predict

fast predictor Reward

item labels 0
visible ] hidden W |:|
)

contextual

]
encoding “O‘“O‘“O‘“O‘“C*)_

support set A A j

i

O
attend @

~
matching networks

style slow-predictor

£

held-out
item



Conclusion

We introduced a model that learns active learning algorithms end-to-end.

For a distribution of related tasks, our model jointly learns: a data representation, an item
selection heuristic, and a prediction function.

Our goal was to move away from engineered selection heuristics towards strategies
learned directly from data.

Our model leverages labeled instances from different but related tasks to learn a selection
strategy for the task at hand, while simultaneously adapting its representation of the data and its
prediction function.



