
Learning Algorithms for Active Learning ICML 2017

Matching Networks for One Shot Learning NIPS 2016

2018.11.26

Matching Networks

Map from a (small) support set of k examples of

input-label pairs 𝑆 = {(𝑥𝑖 , 𝑦𝑖)}𝑖=1
𝐾 to a classifier 𝐶𝑆(ො𝑥).

𝑆 → 𝐶𝑆 ො𝑥 𝑃 ො𝑦 ො𝑥, 𝑆 =෍

𝑖=1

𝑘

𝑎(ො𝑥, 𝑥𝑖)𝑦𝑖

𝑎 ො𝑥, 𝑥𝑖 =
𝑒𝑐(𝑓 ො𝑥 ,𝑔(𝑥𝑖))

σ𝑗=1
𝑘 𝑒𝑐(𝑓 ො𝑥 ,𝑔(𝑥𝑗))

Embedding functions f and g are appropriate neural networks to embed ො𝑥 and 𝑥𝑖

state

遗忘门

输入门

输出门

双向LSTM

Closely related to metric learning, the embedding functions f and g act as a lift to feature

space X to achieve maximum accuracy through the classification function described in

𝑃 ො𝑦 ො𝑥, 𝑆 = σ𝑖=1
𝑘 𝑎(ො𝑥, 𝑥𝑖)𝑦𝑖.

differentiable nearest neighbor++

Embedding the elements of the set through a function which takes as input the full set 𝑆 in

addition to 𝑥𝑖, i.e. 𝑔 becomes 𝑔(𝑥𝑖 , 𝑆). Thus, as a function of the whole support set 𝑆, 𝑔 can

modify how to embed 𝑥𝑖.

Embedding the training examples: g is a bidirectional LSTM over the examples, more precisely,

let 𝑔′(𝑥𝑖) be a neural network(e.g. a VGG or inception model).

𝑔 𝑥𝑖 , 𝑆 = ℎ𝑖 + ℎ𝑖 + 𝑔′(𝑥𝑖)

ℎ𝑖 , Ԧ𝑐𝑖 = LSTM(𝑔′ 𝑥𝑖 , ℎ𝑖−1, Ԧ𝑐𝑖−1) ℎ𝑖 , ശ𝑐𝑖 = LSTM(𝑔′ 𝑥𝑖 , ℎ𝑖+1, ശ𝑐𝑖+1)

Embedding the test example

Define a task T as distribution over possible label sets L

f is a an LSTM that processes for a fixed amount (K time steps) and at each point also attends

over the examples in the training set. The encoding is the last hidden state of the LSTM.

one-shot learning is much easier if you train the network to do one-shot learning.

non-parametric structures in a neural network make it easier for networks to remember

and adapt to new training sets in the same tasks.

Conclusion

An obvious drawback of our model is the fact that, as the support set S grows in size, the

computation for each gradient update becomes more expensive

When the label distribution has obvious biases (such as being fine grained), our model

suffers.

Learning Algorithms for Active Learning

Task Description

support set 𝑆 ≡ {(𝑥, 𝑦)} evaluation set 𝐸 = {(ො𝑥, ො𝑦)}

𝑆𝑡
𝑢 = {(𝑥,∙)} denote the set of items in the support set whose labels are still unknown after t label queries

𝑆𝑡
𝑘 = {(𝑥, 𝑦)} denote the items whose labels are known.

𝑆𝑡 denote the joint set of labeled and unlabeled items after t label queries.

𝑅(𝐸, 𝑆𝑡 , 𝑠𝑡) denote the reward won by the model when predicting labels for the evaluation set.

𝑠𝑡 denote the control state of our model after viewing t labels.

𝑅(𝐸, 𝑆𝑡, 𝑠𝑡) ≡ σ(ො𝑥, ො𝑦)∈𝐸 log𝑝(ො𝑦| ො𝑥, 𝑠𝑡 , 𝑆𝑡) gives log-likelihood of the predictions 𝑝(ො𝑦| ො𝑥, 𝑠𝑡 , 𝑆𝑡) on the evaluation set.

𝜋(𝑆, 𝑇) indicates unrolling the model’s active learning policy 𝜋 for T steps on

support set S, unrolling 𝜋 produces the intermediate states { 𝑆1, 𝑠1 , … , (𝑆𝑇 , 𝑠𝑇)}。

CONTEXT-[FREE|SENSITIVE]

ENCODING

Denote the context-free encoding of item 𝑥𝑖 ∈ 𝑆 as 𝑥𝑖
′, and similarly define ො𝑥𝑖

′ for ො𝑥𝑖
′ ∈ 𝐸

The context-sensitive encoder produces an embedding 𝑥𝑖
′′ for each item 𝑥𝑖 ∈ 𝑆 based on the

context-free embeddings 𝑥𝑗
′: ∀𝑥𝑗 ∈ S..

Model Architecture

𝑥𝑖
′′ = 𝑥𝑖

′ +𝑊𝑒[ℎ𝑖; ℎ𝑖]

READING

This module concatenates the embedding 𝑥′′ and label 𝑦𝑖 for the item indicated by the selection

module, and linearly transforms them before passing them to the controller.

At each step t, the controller receives an input 𝑟𝑡 from the reading module which encodes the most

recently read item/label pair. Additional inputs could take advantage of task-specific information

𝑠𝑡 = LSTM(𝑠𝑡−1, 𝑟𝑡)

SELECTION

At each step t, the selection module

places a distribution 𝑃𝑡
𝑢 over all

unlabeled items 𝑥𝑖
𝑢 ∈ 𝑆𝑡

𝑢, It then

samples the index of an item to label

from 𝑃𝑡
𝑢, and feeds it to the reading

module.

𝑏𝑡
𝑖 = 𝑥𝑖

′′ ⊙𝑊𝑏𝑠𝑡

computes 𝑃𝑡
𝑢 using a gated, linear combination of features which measure controller-item similarity and item-

item similarity

[max|mean|min] cosine similarity to any (un)labeled item

𝑑𝑡
𝑖 𝑔𝑡 = 𝜎(𝑊𝑔𝑠𝑡) For each 𝑥𝑖

𝑢 ∈ 𝑆𝑡
𝑢, compute 𝑝𝑡

𝑖 = (𝑔𝑡 ⊙𝑑𝑡
𝑖)𝑇𝑤𝑝

𝑃 𝑎 =
𝑒
𝑞 𝑎
𝑇

σ𝑖=1
𝑛 𝑒

𝑞(𝑖)
𝑇

For each unlabeled 𝑥𝑖
𝑢, compute a set of attention weights over the labeled 𝑥𝑗

𝑘 ∈ 𝑆𝑡
𝑘 by

applying a softmax to the relevant cosine similarities, using 𝛾𝑡
𝑖 as a temperature for the softmax.

𝛾𝑡
𝑖 = exp((𝑥′′)𝑇𝑊𝛾𝑠𝑡)

The final fast prediction is formed by taking a convex combination of the labels 𝑦𝑗 for the

labeled 𝑥𝑗
𝑘 ∈ 𝑆𝑡

𝑘 using the computed attention weights.

temperature

Training the Model

Optimize the parameters of our model using a combination of backpropagation and policy gradients.

For a clear review of optimization techniques for general stochastic computation graphs, see Schulman et

al. (2016a).

Ԧ𝑆 denotes the set of intermediate states {(𝑆𝑡 , 𝑠𝑡)} generated by the model.

𝑅(Ԧ𝑆) denotes the sum of rewards received by the model while working on episode (𝑆, 𝐸)

Rather than using the gradients in Equation 5 directly, we optimize the model parameters using

generalized Advantage Estimation (Schulman et al., 2016b), which provides an actor-critic approach

for approximately optimizing the policy gradients in Equation 5.

We introduced a model that learns active learning algorithms end-to-end.

Our model leverages labeled instances from different but related tasks to learn a selection

strategy for the task at hand, while simultaneously adapting its representation of the data and its

prediction function.

Our goal was to move away from engineered selection heuristics towards strategies

learned directly from data.

For a distribution of related tasks, our model jointly learns: a data representation, an item

selection heuristic, and a prediction function.

Conclusion

