

Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks

Chelsea Finn Pieter Abbeel Sergey Levine

ICML 2017

Outline

- Introduction
- Model-Agnostic Meta-learning
- Applications
 - Supervised Learning
 - Reinforcement Learning
- Experiments
- Conclusions

Introduction

One shot learning

- Human learn
 - a few examples
 - Learn quickly
- Approaches
 - Transfer Learning
 - Meta Learning
 - Model Agnostic Meta Learning

Model Agnostic Meta Learning

Intuition

- some internal representations are more transferrable than others
- maximizing the sensitivity of the loss functions of new tasks with respect to the parameters

Model Agnostic Meta Learning

- Model parameters that are sensitive to small changes in the task
- Small changes in the parameters will produce large improvements on the loss function

Model Agnostic Meta Learning

Meta Learning Problem Set-up

F : a model , that maps observations x to outputs a, parameterized by $\boldsymbol{\theta}$

p(T) : a distribution over tasks

$$\mathcal{T} = \{\mathcal{L}(\mathbf{x}_1, \mathbf{a}_1, \dots, \mathbf{x}_H, \mathbf{a}_H), q(\mathbf{x}_1), q(\mathbf{x}_{t+1} | \mathbf{x}_t, \mathbf{a}_t), H\}$$

- L : a loss function
- q(x1) : a distribution over initial observations,
- q(xt+1|xt, at) : a transition distribution
- H : an episode length

K-shot Learning: K samples drawn from qi

A Model-Agnostic Meta-Learning Algorithm

Method:

For the Ti`s the model parameter θ i:

$$\theta_i' = \theta - \alpha \nabla_\theta \mathcal{L}_{\mathcal{T}_i}(f_\theta).$$

Meta-objective:

Figure 1. Diagram of our model-agnostic meta-learning algorithm (MAML), which optimizes for a representation θ that can quickly adapt to new tasks.

$$\min_{\theta} \sum_{\mathcal{T}_i \sim p(\mathcal{T})} \mathcal{L}_{\mathcal{T}_i}(f_{\theta'_i}) = \sum_{\mathcal{T}_i \sim p(\mathcal{T})} \mathcal{L}_{\mathcal{T}_i}(f_{\theta - \alpha \nabla_{\theta} \mathcal{L}_{\mathcal{T}_i}(f_{\theta})})$$

A Model-Agnostic Meta-Learning Algorithm

Algorithm 1 Model-Agnostic Meta-Learning

Require: $p(\mathcal{T})$: distribution over tasks

Require: α , β : step size hyperparameters

- 1: randomly initialize θ
- 2: while not done do
- 3: Sample batch of tasks $\mathcal{T}_i \sim p(\mathcal{T})$
- 4: for all \mathcal{T}_i do
- 5: Evaluate $\nabla_{\theta} \mathcal{L}_{\mathcal{T}_i}(f_{\theta})$ with respect to K examples
- 6: Compute adapted parameters with gradient descent: $\theta'_i = \theta - \alpha \nabla_{\theta} \mathcal{L}_{\mathcal{T}_i}(f_{\theta})$
- 7: **end for**

8: Update
$$\theta \leftarrow \theta - \beta \nabla_{\theta} \sum_{\mathcal{T}_i \sim p(\mathcal{T})} \mathcal{L}_{\mathcal{T}_i}(f_{\theta'_i})$$

9: end while

$$\theta_i' = \theta - \alpha \nabla_\theta \mathcal{L}_{\mathcal{T}_i}(f_\theta).$$

$$\min_{\theta} \sum_{\mathcal{T}_i \sim p(\mathcal{T})} \mathcal{L}_{\mathcal{T}_i}(f_{\theta'_i}) = \sum_{\mathcal{T}_i \sim p(\mathcal{T})} \mathcal{L}_{\mathcal{T}_i}(f_{\theta - \alpha \nabla_{\theta} \mathcal{L}_{\mathcal{T}_i}(f_{\theta})})$$

$$\theta \leftarrow \theta - \beta \nabla_{\theta} \sum_{\mathcal{T}_i \sim p(\mathcal{T})} \mathcal{L}_{\mathcal{T}_i}(f_{\theta'_i})$$

Supervised Learning

Algorithm 2 MAML for Few-Shot Supervised Learning

Require: $p(\mathcal{T})$: distribution over tasks

Require: α , β : step size hyperparameters

- 1: randomly initialize θ
- 2: while not done do
- 3: Sample batch of tasks $\mathcal{T}_i \sim p(\mathcal{T})$
- 4: for all \mathcal{T}_i do
- 5: Sample K datapoints $\mathcal{D} = {\mathbf{x}^{(j)}, \mathbf{y}^{(j)}}$ from \mathcal{T}_i
- 6: Evaluate $\nabla_{\theta} \mathcal{L}_{\mathcal{T}_i}(f_{\theta})$ using \mathcal{D} and $\mathcal{L}_{\mathcal{T}_i}$ in Equation (2) or (3)
- 7: Compute adapted parameters with gradient descent: $\theta'_i = \theta - \alpha \nabla_{\theta} \mathcal{L}_{\mathcal{T}_i}(f_{\theta})$
- 8: Sample datapoints $\mathcal{D}'_i = {\mathbf{x}^{(j)}, \mathbf{y}^{(j)}}$ from \mathcal{T}_i for the meta-update
- 9: end for
- 10: Update $\theta \leftarrow \theta \beta \nabla_{\theta} \sum_{\mathcal{T}_i \sim p(\mathcal{T})} \mathcal{L}_{\mathcal{T}_i}(f_{\theta'_i})$ using each \mathcal{D}'_i and $\mathcal{L}_{\mathcal{T}_i}$ in Equation 2 or 3
- 11: end while

Regression problem

$$\mathcal{L}_{\mathcal{T}_i}(f_{\phi}) = \sum_{\mathbf{x}^{(j)}, \mathbf{y}^{(j)} \sim \mathcal{T}_i} \|f_{\phi}(\mathbf{x}^{(j)}) - \mathbf{y}^{(j)}\|_2^2$$

Classification problem

$$\mathcal{L}_{\mathcal{T}_i}(f_{\phi}) = \sum_{\mathbf{x}^{(j)}, \mathbf{y}^{(j)} \sim \mathcal{T}_i} \mathbf{y}^{(j)} \log f_{\phi}(\mathbf{x}^{(j)}) + (1 - \mathbf{y}^{(j)}) \log(1 - f_{\phi}(\mathbf{x}^{(j)}))$$

Reinforcement Learning

Algorithm 3 MAML for Reinforcement Learning

Require: $p(\mathcal{T})$: distribution over tasks

Require: α , β : step size hyperparameters

- 1: randomly initialize θ
- 2: while not done do
- 3: Sample batch of tasks $\mathcal{T}_i \sim p(\mathcal{T})$
- 4: for all \mathcal{T}_i do

5: Sample K trajectories
$$\mathcal{D} = \{(\mathbf{x}_1, \mathbf{a}_1, ..., \mathbf{x}_H)\}$$
 using f_{θ}
in \mathcal{T}_i

- 6: Evaluate $\nabla_{\theta} \mathcal{L}_{\mathcal{T}_i}(f_{\theta})$ using \mathcal{D} and $\mathcal{L}_{\mathcal{T}_i}$ in Equation 4
- 7: Compute adapted parameters with gradient descent: $\theta'_i = \theta - \alpha \nabla_{\theta} \mathcal{L}_{\mathcal{T}_i}(f_{\theta})$

8: Sample trajectories $\mathcal{D}'_i = \{(\mathbf{x}_1, \mathbf{a}_1, \dots, \mathbf{x}_H)\}$ using $f_{\theta'_i}$ in \mathcal{T}_i

9: end for

10: Update
$$\theta \leftarrow \theta - \beta \nabla_{\theta} \sum_{\mathcal{T}_i \sim p(\mathcal{T})} \mathcal{L}_{\mathcal{T}_i}(f_{\theta'_i})$$
 using each \mathcal{D}'_i
and $\mathcal{L}_{\mathcal{T}_i}$ in Equation 4

11: end while

The loss of the RL Task

$$\mathcal{L}_{\mathcal{T}_i}(f_{\phi}) = -\mathbb{E}_{\mathbf{x}_t, \mathbf{a}_t \sim f_{\phi}, q_{\mathcal{T}_i}} \left[\sum_{t=1}^H R_i(\mathbf{x}_t, \mathbf{a}_t) \right]$$

Regression Experiments

Regression : Sine wave

- Meta Training:
 - In p(T) is continuous
 - Amplitude varies within [0.1, 5.0]
 - Phase varies within $[0, \pi]$

During training and testing, data points x are sampled uniformly from [-5.0, 5.0] The loss is the mean-squared error(MSE).

• Model:

A neural network model with 2 hidden layers of size 40 with ReLU

• Training:

Use one gradient update with K = 10 examples with a fixed step size α = 0.01, and use Adam as the meta-optimizer

Regression Experiments

Regression : Sine wave

Meta Testing:

Fine-tune a single meta-learned model on varying numbers of K examples

• Evaluation:

The mean-squared error(MSE) for the validation data points

Two baselines:

- 1. Pretraining on all of the tasks, on all samples , at test-time, fine-tuning with gradient descent on the K provided points, using an automatically tuned step size
- 2. An oracle which receives the true amplitude and phase as input

Regression Experiments Results

MAML: •

Pretrained: •

Regression Experiments Results

Regression : Sine wave

Classification : few-shot image recognition

• The problem setup:

- select N unseen classes, provide the model with K different instances of each of the Nclasses
- evaluate the model's ability to classify new instances within the N classes

Network Architecture(Model):

which has 4 modules with a 3 \times 3 convolutions and 64 filters a ReLU nonlinearity, and 2 \times 2 max-pooling

• Data Set:

Omniglot dataset consists of 20 instances of 1623 characters from 50 different alphabets MiniImagenet dataset involves 64 training classes, 12 validation classes, and 24 test classes.

Classification Experiments Results

Classification : few-shot image recognition

	5-way Accuracy		20-way Accuracy	
Omniglot (Lake et al., 2011)	1-shot	5-shot	1-shot	5-shot
MANN, no conv (Santoro et al., 2016)	82.8%	94.9%	-	-
MAML, no conv (ours)	$89.7 \pm \mathbf{1.1\%}$	$97.5 \pm 0.6\%$	-	_
Siamese nets (Koch, 2015)	97.3%	98.4%	88.2%	97.0%
matching nets (Vinyals et al., 2016)	98.1%	98.9%	93.8%	98.5%
neural statistician (Edwards & Storkey, 2017)	98.1%	99.5%	93.2%	98.1%
memory mod. (Kaiser et al., 2017)	98.4%	99.6%	95.0%	98.6%
MAML (ours)	$98.7 \pm \mathbf{0.4\%}$	$99.9 \pm \mathbf{0.1\%}$	$95.8 \pm 0.3\%$	$98.9 \pm \mathbf{0.2\%}$

	5-way Accuracy		
MiniImagenet (Ravi & Larochelle, 2017)	1-shot	5-shot	
fine-tuning baseline	$28.86 \pm 0.54\%$	$49.79 \pm 0.79\%$	$] \theta \leftarrow \theta - \beta \nabla_{\theta} \sum \mathcal{L}_{\mathcal{T}_i}(f_{\theta'_i}) $
nearest neighbor baseline	$41.08 \pm 0.70\%$	$51.04 \pm 0.65\%$	$\mathcal{T}_i \sim p(\mathcal{T})$
matching nets (Vinyals et al., 2016)	$43.56 \pm 0.84\%$	$55.31 \pm 0.73\%$	$0' 0 \nabla C (f)$
meta-learner LSTM (Ravi & Larochelle, 2017)	$43.44 \pm 0.77\%$	$60.60 \pm 0.71\%$	$\theta_i = \theta - \alpha \nabla_{\theta} \mathcal{L}_{\mathcal{T}_i}(J_{\theta}).$
MAML, first order approx. (ours)	$48.07 \pm \mathbf{1.75\%}$	$63.15 \pm 0.91\%$	
MAML (ours)	$48.70 \pm 1.84\%$	$63.11 \pm 0.92\%$]

Reinforcement Learning Experiments

RL: 2D Navigation

• RL problem:

a set of tasks where a point agent must move to different goal positions in 2D MAML to maximize performance after 1 policy gradient update using 20 trajectories

• Evaluation:

The reward is the negative squared distance to the goal

Adaptation to a new task with up to 4 gradient updates, each with 40 samples

Two baselines:

- 1. Conventional pretraining on the same set of tasks, random initialization
- 2. An oracle policy that receives the goal position as input

RL: 2D Navigation

Conclusion

The advantages

- It is simple
- Does not introduce any learned parameters for meta-learning
- Applicable to any models representation that is amenable to gradient-based training
- Adaptation can be performed with any amount of data and any number of gradient steps

The disadvantages

- 需要计算二次梯度,训练会很慢,很难支持大型深度神经网络
- 无监督数据处理效果不好