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Data-driven

Existing data-driven AL methods have some limitations:

- learn from closely related domains (Bachman et al., 2017)
- use a greedy selection that may be suboptimal (Konyushkova et al., 2017)
- rely on properties of specific classifiers (Konyushkova et al., 2017)

There is still no general-purpose non-myopic methods that
depend neither on the kind data nor on the specific ML
model used in training.



Purpose

* transferable
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MNIST CIFAR-10

Should be transferable across
unrelated datasets

* flexibility

Decision tree SVM

Have sufficient flexibility to be applied in
different ML models
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Approach

Reformulate AL as a Markov Decision Process (MDP)
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Use reinforcement learning (RL) to find AL strategy as an optimal MDP policy.

Convglution Convgluﬁon Fully cgnnected

=N~ . IR\
DQN = NN V7 AEREN VIE
HPoem-0 (o

“
s
<
Q
40
8
&

N\ “ 2% -
z 2

éao

22 B B2
OJO

ajr|r]e
© (¢] (&)

o-

action
A,



Contents

* Introduction

 RLAL
—[Formulating AL as An MDP ]
— Policy Learning Using RL

* Experiments




MDP

:l Agent ]
state reward action

S R, A,

E‘. Rr+l r i
| . S.. | Environment




Formulating AL as An MDP

1. Train a classifier f; using L.

2. A srare@is characterised by| f;, £;, and U;

3. The AL agent selects an action@e Aj. by following a policy 7 : s; + a; that defines a
datapoint|zt) € U,|to be annotated.

4. Look up the label y*) of *) in D and set £,1 = £, U{(zD, yN}, Upry = U, \ {xD}.

5. Give the agent the reward@ linked to empirical|performance value /;

How to define state, action and reward ?



State

States It only makes sense to perform AL when there is a lot of unlabelled data. Without loss of
generality, we can therefore set aside at the start of each AL run a subset }V_C Uy and replace U, by

Up \ V. We use the classifier’s score 7 on VV as a means to keep track of the state of the learning
procedure. Then, we take the state representation to be a vector s; of sorted values ﬁt { x;) for all x;
in V.
St = Sort(j;lr 5;2' ---;5;17)

(a) Random (b) Uncertainty (c) Learnt strategy

Figure 1: The evolution of the learning state vector s; during an annotation episode starting from the same
state for (a) random sampling, (b) uncertainty sampling, and (c) our learnt strategy. Every column represents
s at iteration ¢, with |V| = 30 . Yellow corresponds to values of 7; that predict class 1 and blue — class 0.



Action

taking an action a;
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selecting a data point x(®) to be annotated

the current classifier f; on x;
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Reward

Goal of AL: Goal of RL.:

reach the quality g in as few “ maximize cumulative
iterations as possible reward

Reward for every iteration: 7 = —1

Cumulative reward R: m+...+rp_1=-T+1

The fewer iterations, the larger the reward.
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Policy Learning Using RL

Q™ (s¢, a;)|aims to predict —(7T" — t)  #remaining steps before reaching the target quality

Procedure To account for the diversity of AL experiences we use a collection of Z annotated
datasets { Z; }1<;<z to simulate AL episodes. We start from a random policy 7. Then, learning is
performed by repeating the following steps:

1. Pick a labelled dataset Z € {Z;} and split it into subsets D and D".

2. Use 7 to simulate AL episodes on Z by initially hiding the labels in D and follow-
ing an MDP as described in Sec. [3.2] Keep the experience in the form of transitions
(8¢, @t Tt41, St41).

3. Update policy 7 according to the experience with the DQN update rule.



DON Implementation
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Figure 2: Adapting the DQN architecture. Left: In standard DQN, the Q-function takes the state vector as
input and yields an output for each discrete action. Right: In our version, actions are represented by vectors.
The Q-function takes action and the state as input and returns a single value.
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Experiments

Baselines

Rs, random sampling

Us, uncertainty sampling

QUIRE, informativeness and representativeness

ALBE, a recent meta-AL algorithm that adaptively combines strategies, including Us, Rs and QUIRE.
LAL-ind, formulates AL as a regression task and learns a greedy strategy that is transferable between
datasets.

LAL-iter, a variation of LAL-ind that tries to better account for the bias caused by AL selection.
MLP-GAL, learns a strategy from multiple datasets with a policy gradient RL method



Transferability

Datasets:
0-adult, 1-australian, 2-breast cancer, 3-diabetes, 4-flare solar,
5-heart, 6-german, 7-mushrooms, 8-waveform, 9-wdbc

® Evaluation: the average number of annotations required to achieve the desired target accuracy

® Use LogReg and ran 500 trials where AL episodes run up to 100 iterations

® [ eave-one-out: training on 8 of the datasets selected from number 1 to number 9, and evaluating on the
remaining one

Scenario test leave-one-out

Dataset 0 1 2 3 4 5 6 7 8 9
Rs 50.78 | 25.31 25.65 30.33 1557 44.83 20.80 42.81 45.28 19.36
Us 41.83 | 13.53  27.07 27.84 15.50 37.1 15.60 15.6 23.83 7.25
QUIRE 58.33 | 30.02 33.33 37.12 9.02 57.58 20.30 429 36.49 15.45
ALBE 55.66 | 29.79 31.84 33.62 10.91 50.71 21.02 39.12 41.23 16.16
LAL-ind 59.39 | 20.88 20.85 26.63 1531 44.14 18.16 24.15 39.13 11.22
LAL-iter | 63.29 | 20.24 21.79 28.03 14.84 40.38 19.90 252  36.97 10.59
OURS 37.52 | 14.15 18.79 26.77 14.67 32.16 15.06 21.94 20.91 7.09
notransf — 1% 3 y e 7/ R 1S T 6 R 9 R g

Table 1: Average number of annotations required to reach a predefined quality level.

target quality g: 98% of the maximum quality of the classifier
trained on 100 randomly drawn data points
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Figure 5: Performance of all the strategies on O-adult dataset.



Flexibility

Use an SVM instead of LogReg

Baseline Rs Us OURS
LogReg-100 | 32.07 —28.80% 34.71%}

LogReg-200 | 80.06 —29.61% —39.96%
LogReg-500 | 51.59 —31.49% —37.75%

SYM 3087 —181% —28.35%

Table 2: Increasing the number of annotations still using logis-
tic regression (first three rows) and using SVM instead of logistic
regression as the base classifier (fourth row). We report the aver-
age number of annotations required using Rs and the percentage

saved by either Us or OURS.

Results reaching 98% of the quality
of a classifier trained with 200 and
500 random data points




What do we select?

time intervals

Structured behavior
P = (Ve = 0]x¢)
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(c) Evolution over time for OURS.



Transfer or not?

OURS-notransfer: learn on one-half of a dataset and transfer to the other half

Scenario test leave-one-out

Dataset 0 1 2 3 4 5) 6 7 8 9
Rs 50.78 | 25.31  25.65 30.33 15.57 4483 20.80 42.81 45.28 19.36
Us 41.83 | 13.53 27.07 27.84 15.50 37.1 15.60 15.6 23.83 7.25
QUIRE 58.33 | 30.02 33.33 37.12 9.02 57.58 20.30 429 36.49 15.45
ALBE 55.66 | 29.79 31.84 33.62 10.91 50.71 21.02 39.12 41.23 16.16
LAL-ind 59.39 | 20.88 20.85 26.63 1531 44.14 18.16 24.15 39.13 11.22
LAL-iter | 63.29 | 20.2j 21.79 28.03 14.84 40.38 19.90 25.2  36.97 10.39

notransf — | 15.01 16.14  24.40 — 2326 14.65 16.47  18.06 7.14

[OURS 37.52 | 14.15 18.79 26.77 14.67 32.16 15.06 21.94 20.91 7.09]

Table 1: Average number of annotations required to reach a predefined quality level.

Learn the strategy on dataset 1 and test it on datasets 2-9. The success rate drops to around 40% on average.
Using multiple datasets is important !



Conclusion

* Presented a data-driven approach to AL that is transferable and
flexible.

* Reformulate AL as a Markov Decision Process (MDP) and use
reinforcement learning (RL) to find AL strategy as an optimal
MDP policy.

* The resulting AL strategies outperform state-of-the-art approaches.



