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Background

A crowdsourced model uses a large pool of
workers to gather labels for a given training data
set that will be used for the purpose of learning a
good classifier. Such learning environments that
Involve the crowd give rise to a multitude of design

choices that do not appear In traditional learning
environments.

How to efficiently learn and generalize from the
crowd with minimal cost?
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Notations

e X Instancespace

oY ={+1,—-1} Label space

o X —>Y Hypothesis

o fzerr,(f )=0 Target function in hypothesisclass F
e D Distribution over X xY

D, Themarginal of D over X

serry(= Pr .. o[f0) # ' (x)]



Notations

eg.: X —>Y Define labeler 1, wesay thatg. is perfectif erry(g;) =0

e P Thedistribution over all labelers which is uniform

o =Pr_,[err,(g.)=0] Thefraction of perfect labelers

em_, Thetotalnumber of labeled samples drawn from the realizable distribution D
needed tooutputa classifier f that haserrD(f) <&, with probability 1-6.We know from
the VC theory,that for a hypothesisclass F with VVC -dimension d and no additional

assumptiorson F,m_; € O(¢7'(d In(1/ &) + In(1/ 5)))



Notations

o | Asetof labelers
e Maj, (x) Thelabel assigned to x by themajority of labelers in L
e MAJ (L) Theclassifier that for each x returns prediction Maj, (x)

When o = 1 + (1), per sample needs O(log( %)) gueries to obtain

2
almost perfect label where mis the training datasizeand o Is the

desired failure probability



Algorithm

Consider a very simple baseline algorithm for the case of « > 0.5.

BASELINE: Draw a sample of size m = m, s from D)y and label each example x by

Maj; (x), where L ~ P¥ fork = O ((w — 0.5)7%1In (%)) is a set of randomly drawn

labelers. Let S be the resulting labeled set. Return classifier O = (.5).

1. take log(m/o) more labels than it requires samples

2.when perfect labelers form a small majority of the labelers
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Boosting

Theorem 1 (Schapire (1990)) For any p < % and distribution D, consider three classifiers: 1)
classifier hy such that errp(hy1) < p; 2) classifier ho such that errp,(ha) < p, where Dy = %Dc +
2 Dy for distributions D¢ and Dy that denote distribution D conditioned on {x | hi(z) = f*(z)}
and {x | hy(x) # f*(x)}, respectively; 3) classifier hs such that errp,(hs) < p, where D3 is D
conditioned on {x | hi(x) # ha(x)}. Then, exxp(MAJ (hq, he, h3)) < 3p* — 2p°.

1 1
h1~D1’h2~ D2:§D| +§Dc’h3~D3

err, (h) < p,i=1,23=err,(MAJ (h,h,,h,)) <3p*-2p°
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Algorithm 2 INTERLEAVING: BOOSTING BY PROBABILISTIC FILTERING FOR v = % + O(1)

Input: Given a distribution Dy, a class of hypotheses /, parameters € and 0.

Phase 1:
Let S; = CORRECT-LABEL(S,d/6), for a set of sample S; of size 2m e 576 from D).
Let hy = OF(S—l)
Phase 2:
Let S; = FILTER(S?2, h1), for a set of samples .52 of size ©(m, s) drawn from D .
Let Sc be a sample set of size © (m_ / 5) drawn from D) y.
Let S4; = CORRECT-LABEL(S; U S, d/6).
Let W; = {(z,y) (—_‘_%|y7éh1($)} and Let W = Say \ W7. - -
Draw a sample set W of size ©(m_/ 5) from a distribution that equally weights W and W¢.

Let hg = O}:(W)
Phase 3:
Let S3 = CORRECT-LABEL(S3,3/6), for a sample set S5 of size 2m sz 56 drawn from D)y
conditioned on A (x) # ha(x).
Let hy = OF(S—g)
return RIEL‘] (hl . hg, hg)




Algorithm

Input: Given a distribution D)y, a class of hypotheses /', parameters € and 9.
Phase 1:
Let 5; = CORRECT-LABEL(S1,0/6), for a set of sample S; of size 2m._/ 5/¢ from D).
Let hy = O}:(S])

CORRECT-LABEL(S, d):

forx € Sdo

Let L ~ P" for asetof k = O(log(l‘
end

return S.

s

l)) labelers drawn from P and S < SU {(z,Maj (x))}.

X

°

1 1
M., s =0(m, ;). Preerty () <> 4e) >1-2
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Phase 2:
Let St = FILTER(Ss, h1 ), for a set of samples Sy of size ©(m ) drawn from D) y.
Let Sc be a sample set of size ©(m / 5) drawn from D) y.
Let S4y = CORRECT-LABEL(S7 U S, d/6).
Let Wi = {(z,y) E_@ly;éhl(:l?)} and Let W = Syqy \ W7. -
Draw a sample set W of size ©(m_/ 5) from a distribution that equally weights W and We.

Let ho = O]:(W)

W =D,



Algorithm

Algorithm 1 FILTER(S, h)

Let S; =0 and N = log (1).
forx € Sdo
fort=1,..., N do

Draw a random labeler ¢ ~ P and let y; = g;(x)
If ¢ is odd and Maj(y1.¢+) = h(x), then break.
end
Let St = StU{z}. // Reaches this step when for all ¢, Maj(y1.¢) # h(x)
end

return S;
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Lemma 6 Given any sample set S and classifier h, for every x € S
1. If h(z) = f*(x), then x € FILTER(S, h) with probability < \/e.
2. If h(x) # f*(x), then x € FILTER(S, h) with probability > 0.5.

Proof For the first claim, note that z € Sy only if Maj(y1.¢) # h(x) for all ¢ < N. Consider
t = N time step. Since each random query agrees with f*(x) = h(x) with probability > 0.7
independently, majority of N = O(log(1/+/€)) labels are correct with probability at least 1 — /.
Therefore, the probability that the majority label disagrees with h(x) = f*(x) at every time step is
at most \/e.
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2. If h(z) # f*(x), then x € FILTER(S, h) with probability > 0.5.

In the second claim, we are interested in the probability that there exists some ¢t < N, for
which Maj(y1.1) = h(z) # f*(x). This is the same as the probability of return in biased ran-
dom walks, also called the probability of ruin in gambling (Feller, 2008), where we are given a
random walk that takes a step to the right with probability > 0.7 and takes a step to the left with
the remaining probability and we are interested in the probability that this walk ever crosses the
origin to the left while taking /NV or even infinitely many steps. Using the probability of return for
biased random walks (see Theorem 15), the probability that Maj(y1.:) # f*(x) ever is at most

(o \Y _ (o7 \NVH 3 * , % (e
1 /11 < z. Therefore, for each x such that h(z) # [*(x),

1-0.7 1-0.7
|

x € St with probability at least 4/7.



Algorithm

Lemma 7 With probability 1 — exp(—Q(m s 5)), W1, We, and St all have size O(m /5.

Let us first consider the expected size of sets Sy, W, and W . Using Lemma 6, we have

1 1 /1
Omes) = 5 VelSal + VaISal 2 E[IS1] 2 5 (5E) 152l 2 Qm ).

Similarly,
— 1 /1
O(m s 5) > E[Si] + [Sc| > E[W/] > 5 (5\/5) 1S2| = Q(m_/ 5)-
Similarly,
— 1
Olim,es) 2 EISi] +1c| 2 E[Wc] > (1= 3v) ISc] = Qm ).

The claim follows by the Chernoff bound.



Algorithm

Lemma 2 Given a hypothesis class F consider any two discrete distributions D and D’ such that
for all x, p'(x) > ¢ - p(x) for an absolute constant ¢ > 0, and both distributions are labeled
according to f* € F. There exists a constant ¢ > 1 such that for any € and 6, with probability
1 — & over a labeled sample set S of size ' mc s drawn from D', Oz (S) has error of at most € with
respect to distribution D.
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First, notice that because DD and D’ are both labeled according to f* € F, for any f € F we have,
errpr( f Zﬂ )L f(2)# 1 (2) 2 ZC (@)L f@)pfr (@) = - errp(f).

Therefore, if errp/ (f) < ce, then errp(f) < e. Let m’ = m, 5, we have

0> Pr [Af € F,sterrg/(f)=0Aerrp(f) > ce
St~ Dim!

> Pr [3f € F,sterrgi(f) =0Aerrp(f) > €.
S/~ Dtm!’

The claim follows by the fact that m.. s = O (%?raﬁﬁ).
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Lemma 8 Let D¢ and Dy denote distribution D when it is conditioned on {x | h1(x) = f*(x)}
and {x | hi(xz) # f*(x)}, respectively, and let Dy = $D; + 5Dc. With probability 1 — 26 /3,
err p, (he) < 3+/€.

et p(X), p,(X), p: (X),and p, (X) be the density of instance x in distributions
D, D,, D, and D, ,respectively.

et N (X), N, (x),M.(x) and M, (x) be the number of occurrences of xin the sets

S., S, W. and W, , respectively.
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If h1(x) = f*(x): Then, there exist absolute constants ¢; and c2 according to Lemma 7, such that
J(r) = LE [Mc_(x)] s EMo(2)] | E[Nc(@)] _ |Scl- p(x)
2 \Wel C1-M /e 5 C1- M /e 5 C1- M /5
Scl-po(z)- (1 —1/e copo (@
Sl pel)- 03, gy )
p(xz) = po(x)(l — 51/€) ves
If hi(x) # f*(x): Then, there exist absolute constants ¢} and ¢, according to Lemma 7, such that
. [Mf(m)] . EMi(2)] _ E[Ni(2)] 2 p(2)|S,]
Wil ]~ d-myes  -mpes  cp-mgs
_o@be Sl |, )
¢ m s 2P1 2

p'(x)

p(x) =ﬂ1($)%§/g
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Using the super-sampling guarantees of Lemma 2, with probability 1 — 26/3, errp, (h2)

Ve/2.

Phase 3:
Let S3 = CORRECT-LABEL(S3,d/6), for a sample set S3 of size 2m s 5 /6 drawn from D)y
conditioned on Ay (x) # ho(x).

Let hy = O}‘(Sg).
return Maj(hy, ho, h3).

with probability1-6,err, (MAJ (h,,h,,h,)) <¢

- A
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Lemma9 Let S be a sample set drawn from distribution D and let h be such that errp(h) < y/e.
With probability 1 — exp(—S2(|S|/€)), FILTER(S, h) makes O(|S|) label queries.

Proof of Theorem 3 We first discuss the number of label queries Algorithm 2 makes. The total num-
ber of labels queried by Phases 1 and 3 is attributed to the labels queried by CORRECT-LABEL(.S1,6)

and CORRECT-LABEL(S3,0/6), which is O (mﬁﬁ log(?fnvqﬁ/(?)). By Lemma 7, | St U S¢| <
O(m / 5) almost surely. So, CORRECT-LABEL(S/US¢, /6) contributes O (mﬁﬁ log(mﬁ?a/é))

labels. Moreover, as we showed in Lemma 9, FILTER(S2, h1) queries O(m,::g) labels, almost surely.

So, the total number of labels queried by Algorithm 2 is at most O (m N log (%) + mcbg).
This leadsto A = O (\/F log (m‘f’é) + 1) cost per labeled example.

1
mcg,é' = O(E mg,é)
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Theorem 3 (o« = 5 —|— ®(1) case) Algorithm 2 uses oracle O, runs in time poly(d, % 11’1(%))
and with pmbabzhty 1 — 0 returns f € F witherrp(f) <€, using A = O (\/_log (m*/_é

cost per labeled example, I' = 0 golden queries, and A = 1 load. Note that when v’_ > log ( '
the above cost per labeled sample is O(1).

Baseline algorithm takes

labels than It requires samples
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When o < % +0(1), CORRECT — LABEL (S, ¢) and FILTER(S,h) will make mistakes.

PRUNE-AND-LABEL(S, §):

forxz € Sdo

Let L ~ PF forasetof k = O( a% log(l‘ﬂﬂ)) labelers drawn from P.
if Maj-size; (v) < 1 — § then

Get a golden query y* = f*(z),

Restart Algorithm 3 with distribution P <— Py, ,+) and a <

x
L .
18

else
S+ SuU{(z,Maj(x))}.
end
end

return S.
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Algorithm 3 BOOSTING BY PROBABILISTIC FILTERING FOR ANY «
Input: Given a distribution Dy and P, a class of hypothesis ./, parameters ¢, 9, and .
Phase 0:

If a > %, run Algorithm 2 and quit.

Let 8’ = cad for small enough ¢ > 0 and draw S of O(£log(3;)) examples from the distribu-
tion D.

PRUNE-AND-LABEL(Sp, d').

Phase 1:
Let S; = PRUNE-AND-LABEL(S],d’), for a set of sample S; of size 2m s 5 from D.
Let hy = O}*(S_l)
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Phase 2:
Let S; = FILTER(S2, h1), for a set of samples Sy of size ©(m, 5/) drawn from D.
Let S¢ be a sample set of size © (m_/ 5) drawn from D.
Let S4; = PRUNE-AND-LABEL(S7 U S¢, ).
Let W; = {(z.v) E_mh;;éhl(m)} and Let W = Sy \ W7. - -
Draw a sample set W of size ©(m,_; 5) from a distribution that equally weights W; and We.

Let hy = O}:(W)
Phase 3:
Let S3 = PRUNE-AND-LABEL(S3,d’), for a sample set S3 of size 2m /e 5 drawn from D
conditioned on hj (x) # ha(x).
Let hy = O]:(S_g).
return hIELJ (hl \ hg, hg)
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Lemma 11 For any o, with probability 1 — 0, the total number of times that Algorithm 3 is restarted
as a result of pruning is O(Cl—x)

Recall that ¢’ = ¢- 6 for some small enough constant ¢ > 0. Each time PRUNE-AND-LABEL(S, ¢’)
is called, by Hoeffding bound, it is guaranteed that with probability > 1 — ¢’, for each x € S,

|Maj-sizep (x) — Maj-size; (z)| < %,
where L is the set of labelers PRUNE-AND-LABEL(S,d") queries on z. Hence, when we issue a
golden query for = such that Maj-size; () < 1— 9 and prune away bad labelers, we are guaranteed
toremove at least an % fraction of the labelers. Furthermore, no good labeler is ever removed. Hence,
the fraction of good labelers increases from « to /(1 — §). So, in O(cl—l) calls, the fraction of the
good labelers surpasses g and we switch to using Algorithm 2. Therefore, with probability 1 — 9

overall, the total number of golden queries is O(1/a).
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Lemma 2 Given a hypothesis class F consider any two discrete distributions D and D’ such that
for all =, p'(x) > ¢ - p(x) for an absolute constant ¢ > 0, and both distributions are labeled
according to f* € F. There exists a constant ¢ > 1 such that for any € and J, with probability

1 — & over a labeled sample set S of size ¢'m s drawn from D', O z(S) has error of at most € with
respect to distribution D.

Lemma 12 (Robust Super-Sampling Lemma) Given a hypothesis class F consider any two dis-
crete distributions D and D’ such that except for an € fraction of the mass under D, we have that for
all x, p'(x) > ¢ - p(x) for an absolute constant ¢ > 0 and both distributions are labeled according
to f* € F. There exists a constant ¢’ > 1 such that for any € and 6, with probability 1 — § over a
labeled sample set S of size ' m¢ s drawn from D', Oz (S) has error of at most 2¢ with respect to

D.
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Let B be the set of points that do not satisfy the condition that p’(z) > ¢ - p(x). Notice that because
D and D’ are both labeled according to f* € F, for any f € F we have,

errpy (f) = Y 0@ pays @+ D P @) Lp@as@ > Y ep(@)jes @ > e(errp(f)—e).
reB r¢ B r¢B

Therefore, if errp/(f) < ce, then errp(f) < 2e. Let m' = m,. 5, we have

6> Pr [HfeFsters(f)=0Aerrp(f) > ce
S’ ~u DI

> Pr [3f € F,s.terrg(f) =0Aerrp(f) > 2¢l.
S'~~D'm’

The claim follows by the fact that m. 5 = O (%mﬁ}g).
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Theorem 13 (Any o) Suppose the fraction of the perfect labelers is o and let 5' = cad for small
enough constant ¢ > 0. Algorithm 3 uses oracle O, runs in time poly(d, = 11 ln(%)), uses a
training set of size O( Me.5') nze and with probability 1 — ¢ returns f € F wuh err p(f) < € using
O(a) golden queries, load of = per labeler, and a total number of queries

1 1 m. s
)log(5) + e log(" ) )

1 1
,. _1 -
0 (a Med T Dg(é €d’ &'

Note that when \/_ > log (m"rﬁ) andlog(=5) < d, the cost per labeled query is O(L).
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No perfect Labelers

Good labelers have error of < ¢
Bad labelers have error of > 4¢
Assume that more than half of labelers are good

Twogood labelers agree on at least 1- 2¢ fraction of the data
A bad and a good labeler agree on at most1-3¢ of thedata
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Algorithm 4 GOOD LABELER DETECTION

Input: Given n labelers, parameters € and
Let G = ([n], ) be a graph on n vertices with no edges.
Take set () of 16 In(2)n random pairs of nodes from G.
for (7,5) € Q do
if DISAGREE(4, j) < 2.5¢ then add edge (7, j) to G
end
2 Let C be the set of connected components of G each with > n/4 nodes.

fori € [n]\ (Upee C) and C € C do
Take one node j € C, if DISAGREE(4, j) < 2.5¢ add edge (¢, j) to G.

end
return The largest connected component of G

DISAGREE(%, j):

Take set S of O(L In(%)) samples from D.
1
return 57 2 _zes L(gi(@)#g;(2)):
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Theorem 14 Suppose that any good labeler i is such that errp(g;) < €. Furthermore, assume that
errp(g;) € (€,4¢) for any j € [n]. And let the number of good labelers be at least | 5| + 1. Then,

Algorithm 4, returns the set of all good labeler with probability 1 — 0, using an expected load of
A=0 (% In (%)) per labeler.



