Feature-Induced Labeling Information Enrichment for Multi-Label Learning

Qian-Wen Zhang , Yun Zhong, Min-Ling Zhang

AAAI-2018

- Background
- Introduction
- Approach
- Experiments
- Conclusion

Background

Multi-class Learning

Background

Formalization

- Feature space: d-dimensional $\mathcal{X} = \mathbb{R}^d$
- Label space: q class labels
- Training set: p instances
- Task: learn a predictive model $\ h: \mathcal{X}
 ightarrow 2^{\mathcal{Y}}$

$\mathcal{Y} = \{y_1, y_2, \dots, y_q\}$ $\mathcal{D} = \{(\boldsymbol{x}_i, Y_i) \mid 1 \le i \le p\}$ el $h: \mathcal{X} \to 2^{\mathcal{Y}}$

Cross Training

Background

Label Correlation

• If we know the image already has label horse, the probability of it having label grassland would be high.

Classifier Chain

- Background
- Introduction
- Approach
- Experiments
- Conclusion

Introduction

Motivation

• Categorical labeling information is actually a simplification of the rich semantics encoded by multi-label training examples.

20% sky, 20% horses and 60% grassland

特朗普就 2018-09-08 19:08:51 *	
∠ 103	(原标题:英媒:特朗普干预就职典礼照片 摄影师被要求修图展现人多)
0 易信	
🏠 微信	【文/观察者网】特朗普去年上任伊始,就和媒体在就职典礼人数上吵了几个回 合。近两年过去,这个问题如今又被提了出来。
QQ空间	苏京《刀捉》6日独宏迷自称。 铁明莲华时田天港会与白己就即曲礼的人物差护
う 微博	来出《上版》6日五次,月25时,村田自当时24日期等于自己的成果在1000天安有20 来比奥巴马少,和时任白宫发言人肖恩·斯派塞(Sean Spicer)亲自致电照片提供 方进行工程。任用理想所已经需要的原因,共主约它如公,让日期等时变一些
••• 更多	7月27日1月11月11日、「加米」「「「加米」「加米」「加米」「加米」「加米」「加米」「加米」「加米」「加
	《卫报》根据《信息自由法案》从美国内政部获得的记录文件显示,特朗普就 职后的第一天,即2017年1月21日清晨,他就与发布就职典礼照片的美国国家公园

80% Trump, 20% Obama

(NPS) 的代理主管迈克尔·雷诺兹 (Michael Reynolds) 通了电话。

• MLFE: Enrich the labeling information to induce multi-label predictive model with strong generalization performance.

Introduction

Basic Strategy

Leveraging the structural information in the feature space.

- The underlying structure of feature space is characterized by the sparse reconstruction relationships among training examples.
- The reconstruction information is utilized to guide the enrichment process of turning categorical labeling information into numerical labeling information.
- The desired multi-label predictive model is learned from training examples with enriched labeling information based on tailored multivariate regression techniques.

- Background
- Introduction
- Approach
 - Structural Information Discovery
 - Labeling Information Enrichment
 - Predictive Model Induction
- Experiments
- Conclusion

Intuition

• To characterize the underlying structure of feature space, MLFE works by modeling the relationship between one example and all the other examples via sparse reconstruction.

- Feature space: d-dimensional $\ \ \mathcal{X} = \mathbb{R}^d$
- Structural Information Discovery Label space: q class labels • Training set: p instances
- Label space: q class labels $\mathcal{Y} = \{y_1, y_2, \dots, y_q\}$ • Training set: p instances $\mathcal{D} = \{(x_i, Y_i) \mid 1 \le i \le p\}$
- To characterize the underlying structure of feature space, MLFE works by modeling the relationship between one example and all the other examples via sparse reconstruction.

$$\mathbf{A}_i = [m{x}_1,\ldots,m{x}_{i-1},m{x}_{i+1},\ldots,m{x}_p] \; \; egin{array}{c} \mathsf{d} imes(\mathsf{p-1}) \mathsf{matrix} \ \mathsf{all training instances other than} \, m{x}_{\mathsf{i}} \end{array}$$

$$\boldsymbol{v}_i = [w_{1i}, \dots, w_{i-1,i}, w_{i+1,i}, \dots, w_{pi}]^\top$$
 (p-1)-dimensional reconstruction coefficients

• The coefficient vector v_i is learned by solving the following optimization problem:

$$\min_{\boldsymbol{v}_i} \|\mathbf{A}_i \boldsymbol{v}_i - \boldsymbol{x}_i\|_2^2 + \lambda \|\boldsymbol{v}_i\|_1 \quad \text{Solved by ADMM}$$

linear reconstruction error sparsity of the co-efficients

- Background
- Introduction
- Approach
 - Structural Information Discovery
 - Labeling Information Enrichment
 - Predictive Model Induction
- Experiments
- Conclusion

 $\min_{\boldsymbol{v}_i} \|\mathbf{A}_i \boldsymbol{v}_i - \boldsymbol{x}_i\|_2^2 + \lambda \|\boldsymbol{v}_i\|_1$

Labeling Information Enrichment

- binary labeling vector $\boldsymbol{t}_i = (t_{i1}, t_{i2}, \dots, t_{iq})^\top$ $\boldsymbol{t}_i \in \{1, -1\}^q$
- numerical labeling vector $~~ oldsymbol{u}_i = (u_{i1}, u_{i2}, \ldots, u_{iq})^ op \in \mathbb{R}^q$
- reconstruction error over the training set $E(\mathbf{W}) = \sum_{i=1}^{p} \|\mathbf{x}_i - \sum_{j=1}^{p} w_{ji} \mathbf{x}_j\|_2^2$

<u>Suppose that the structural relationship specified in the feature space</u> <u>also holds in the output space</u>.

• reconstruction error $\Phi(\mathbf{U}) = \sum_{i=1}^{p} \|\mathbf{u}_{i} - \sum_{j=1}^{p} w_{ji}\mathbf{u}_{j}\|_{2}^{2}$ in the label space $\mathbf{U} = [\mathbf{u}_{1}, \mathbf{u}_{2}, \dots, \mathbf{u}_{p}]$

Labeling Information Enrichment

• <u>Suppose that the structural relationship specified in the feature space</u> <u>also holds in the output space</u>.

$$\Phi(\mathbf{U}) = \sum_{i=1}^{p} \| \boldsymbol{u}_{i} - \sum_{j=1}^{p} w_{ji} \boldsymbol{u}_{j} \|_{2}^{2} \quad \mathbf{U} = [\boldsymbol{u}_{1}, \boldsymbol{u}_{2}, \dots, \boldsymbol{u}_{p}]$$

• The enriched labeling information is generated by solving the following optimization problem:

 $\min_{\mathbf{U}} \sum_{i=1}^{p} \|\boldsymbol{u}_{i} - \sum_{j=1}^{p} w_{ji} \boldsymbol{u}_{j}\|_{2}^{2} \qquad \text{A standard QP problem}$ s.t. $c_{1} \leq t_{ij} u_{ij} \leq c_{2} \ (1 \leq i \leq p, 1 \leq j \leq q)$

• The constraint ensures that the numerical label possesses the same sign with the binary label and takes value with reasonable magnitude.

- Background
- Introduction
- Approach
 - Structural Information Discovery
 - Labeling Information Enrichment
 - Predictive Model Induction
- Experiments
- Conclusion

Predictive Model Induction

- The original multi-label training set can be transformed into its enriched version $\tilde{\mathcal{D}} = \{(\boldsymbol{x}_i, \boldsymbol{u}_i) \mid 1 \leq i \leq p\}$
- Induce the predictive model by employing multi-output regression techniques.

$$\Omega(\boldsymbol{\Theta}, \boldsymbol{b}) = \frac{1}{2} \sum_{j=1}^{q} \|\boldsymbol{\theta}_{j}\|_{2}^{2} + \beta_{1} \sum_{i=1}^{p} \Omega_{1}(u_{i}) + \beta_{2} \sum_{i=1}^{p} \sum_{j=1}^{q} \Omega_{2}(o_{ij}) + \beta_{3} \sum_{i=1}^{p} \sum_{j=1}^{q} \Omega_{3}(r_{ij})$$
To minimize the objective function Q(Q, b). All EE employs the

$$\Omega_1(u_i) = \begin{cases} 0, & u_i < \epsilon \\ (u_i - \epsilon)^2, & u_i \ge \epsilon \end{cases}$$

$$\Omega_2(o_{ij}) = \begin{cases} 0, & o_{ij} > 0\\ -o_{ij}, & o_{ij} \le 0 \end{cases}$$
$$o_{ij} = t_{ij} \left(\boldsymbol{\theta}_j^\top \varphi(\boldsymbol{x}_i) + b_j \right)$$
$$\Omega_3(r_{ij}) = \begin{cases} 1, & r_{ij} > 0\\ 0, & r_{ij} \le 0 \end{cases}$$
$$r_{ij} = \boldsymbol{\theta}_j^\top \varphi(\boldsymbol{x}_i) + b_j$$

To minimize the objective function $\Omega(\Theta, b)$, MLFE employs the quasi-Newton iterative method named Iterative Re-Weighted Least Square (IRWLS) ϵ -insensitive cost

penalize the case where the sign of predictive output is different to that of original binary label

penalize the case where the predictive model yields large number of relevant labels for the training example

- Background
- Introduction
- Approach
- Experiments
- Conclusion

Table 2: Predictive performance of each comparing algorithm (mean \pm std. deviation) on the regular-scale data sets.

Comparing	One-error ↓							
algorithms	ca1500	emotions	medical	llog	msra	image	scene	yeast
MLFE	0.129 ± 0.047	0.260 ± 0.030	0.113 ± 0.041	0.669 ± 0.044	0.040 ± 0.008	$0.258 {\pm} 0.020$	0.149 ± 0.023	0.231 ± 0.015
LIFT	0.116 ± 0.040	0.255 ± 0.037	0.152 ± 0.039	0.705 ± 0.049	0.057 ± 0.014	0.277 ± 0.023	0.162 ± 0.023	0.229 ± 0.013
RELIAB	0.159 ± 0.062	0.277 ± 0.036	0.168 ± 0.039	0.746 ± 0.028	0.066 ± 0.017	0.350 ± 0.023	0.270 ± 0.023	0.247 ± 0.017
ML^2	0.166 ± 0.078	0.268 ± 0.032	0.129 ± 0.028	0.699 ± 0.038	0.040 ± 0.013	0.267 ± 0.022	0.156 ± 0.029	0.254 ± 0.027
CLR	0.269 ± 0.061	0.322 ± 0.032	0.360 ± 0.170	0.830 ± 0.058	0.144 ± 0.027	0.437 ± 0.019	0.344 ± 0.027	0.241 ± 0.012
RAKEL	0.611 ± 0.084	0.315 ± 0.074	0.246 ± 0.038	0.879 ± 0.026	0.239 ± 0.031	0.412 ± 0.029	0.339 ± 0.027	0.280 ± 0.016
Comparing				Cover	rage ↓			
algorithms	ca1500	emotions	medical	llog	msra	image	scene	yeast
MLFE	0.764 ± 0.013	0.278 ± 0.022	0.031 ± 0.012	0.227 ± 0.027	$0.518 {\pm} 0.010$	0.163 ± 0.014	0.016 ± 0.009	0.452 ± 0.010
LIFT	0.759 ± 0.020	0.280 ± 0.025	0.048 ± 0.022	0.173 ± 0.020	0.539 ± 0.011	0.172 ± 0.014	0.020 ± 0.009	0.459 ± 0.010
RELIAB	0.738 ± 0.013	0.299 ± 0.029	0.047 ± 0.016	0.161 ± 0.020	0.541 ± 0.011	0.199 ± 0.012	0.107 ± 0.011	0.457 ± 0.004
ML^2	0.805 ± 0.013	0.279 ± 0.022	0.031 ± 0.011	0.181 ± 0.019	0.522 ± 0.011	0.165 ± 0.012	0.018 ± 0.009	0.455 ± 0.011
CLR	0.795 ± 0.008	0.334 ± 0.020	0.080 ± 0.068	0.186 ± 0.044	0.618 ± 0.013	0.247 ± 0.016	0.137 ± 0.017	0.480 ± 0.008
RAKEL	0.964 ± 0.006	0.348 ± 0.021	0.089 ± 0.019	0.340 ± 0.023	0.670 ± 0.010	0.253 ± 0.009	0.174 ± 0.015	0.564 ± 0.008
Comparing	Ranking loss ↓							
algorithms	ca1500	emotions	medical	llog	msra	image	scene	yeast
MLFE	0.185 ± 0.008	0.142 ± 0.020	0.020 ± 0.010	0.233 ± 0.027	0.118 ± 0.006	0.135 ± 0.014	0.052 ± 0.010	0.167 ± 0.007
LIFT	0.182 ± 0.004	0.142 ± 0.025	0.033 ± 0.017	0.157 ± 0.021	0.125 ± 0.005	0.147 ± 0.015	0.056 ± 0.009	0.170 ± 0.006
Reliab	0.177 ± 0.005	0.161 ± 0.031	0.031 ± 0.012	0.128 ± 0.018	0.131 ± 0.005	0.181 ± 0.013	0.090 ± 0.010	0.180 ± 0.008
ML^2	0.210 ± 0.009	0.144 ± 0.023	0.019 ± 0.008	0.170 ± 0.020	0.119 ± 0.006	0.138 ± 0.011	0.055 ± 0.011	0.172 ± 0.009
CLR	0.224 ± 0.008	0.199 ± 0.024	0.065 ± 0.059	$0.152 {\pm} 0.039$	0.190 ± 0.009	0.243 ± 0.018	0.119 ± 0.016	0.187 ± 0.005
RAKEL	0.364 ± 0.014	0.217 ± 0.026	0.067 ± 0.015	0.292 ± 0.028	0.232 ± 0.011	0.250 ± 0.012	0.154 ± 0.014	0.250 ± 0.005

Table 2: Predictive performance of each comparing algorithm (mean \pm std. deviation) on the regular-scale data sets.

Comparing	Average precision ↑							
algorithms	ca1500	emotions	medical	llog	msra	image	scene	yeast
MLFE	0.490 ± 0.025	0.815 ± 0.020	0.914 ± 0.024	0.393 ± 0.036	0.827 ± 0.008	0.833 ± 0.014	0.917 ± 0.014	0.767 ± 0.010
LIFT	0.503 ± 0.015	0.817 ± 0.027	0.874 ± 0.029	0.402 ± 0.039	0.830 ± 0.008	0.819 ± 0.015	0.909 ± 0.013	0.762 ± 0.008
RELIAB	0.507 ± 0.019	0.797 ± 0.028	0.869 ± 0.028	0.393 ± 0.034	0.818 ± 0.009	0.776 ± 0.013	0.840 ± 0.014	0.744 ± 0.011
ML^2	0.456 ± 0.027	0.811 ± 0.022	0.903 ± 0.021	0.396 ± 0.036	0.836 ± 0.007	0.827 ± 0.014	0.913 ± 0.016	0.757 ± 0.014
CLR	0.436 ± 0.019	0.762 ± 0.024	0.687 ± 0.192	0.295 ± 0.075	0.741 ± 0.013	0.718 ± 0.014	0.795 ± 0.018	0.745 ± 0.008
RAKEL	0.332 ± 0.019	0.766 ± 0.031	0.802 ± 0.027	0.233 ± 0.026	0.694 ± 0.014	0.725 ± 0.013	0.780 ± 0.018	0.710 ± 0.009
Comparing				Macro-aver	raging F1 ↑			
algorithms	ca1500	emotions	medical	llog	msra	image	scene	yeast
MLFE	0.237 ± 0.022	0.670 ± 0.052	0.720 ± 0.073	0.461 ± 0.062	$0.553 {\pm} 0.015$	0.658 ± 0.024	$0.819 {\pm} 0.026$	0.425 ± 0.023
LIFT	0.176 ± 0.021	0.630 ± 0.042	0.690 ± 0.079	0.399 ± 0.057	0.516 ± 0.017	0.621 ± 0.035	0.797 ± 0.015	0.388 ± 0.022
RELIAB	0.301 ± 0.022	0.650 ± 0.039	0.712 ± 0.053	0.392 ± 0.058	0.546 ± 0.014	0.556 ± 0.035	0.665 ± 0.025	0.405 ± 0.024
ML^2	0.236 ± 0.021	0.650 ± 0.047	0.674 ± 0.061	0.370 ± 0.060	0.548 ± 0.012	0.646 ± 0.029	0.799 ± 0.029	$0.443 {\pm} 0.025$
CLR	0.211 ± 0.025	0.601 ± 0.038	0.600 ± 0.129	0.395 ± 0.062	0.499 ± 0.017	0.525 ± 0.022	0.620 ± 0.025	0.400 ± 0.018
RAKEL	0.187 ± 0.020	0.618 ± 0.036	0.672 ± 0.058	0.366 ± 0.051	0.492 ± 0.020	0.540 ± 0.012	0.644 ± 0.019	0.430 ± 0.014
Comparing	Micro-averaging F1 ↑							
algorithms	ca1500	emotions	medical	llog	msra	image	scene	yeast
MLFE	0.374 ± 0.024	0.684 ± 0.043	0.816 ± 0.032	0.211 ± 0.042	0.725 ± 0.009	0.657 ± 0.021	0.810 ± 0.026	0.649 ± 0.014
LIFT	0.323 ± 0.016	0.659 ± 0.024	0.775 ± 0.036	0.177 ± 0.037	0.716 ± 0.015	0.622 ± 0.031	0.787 ± 0.015	0.645 ± 0.011
RELIAB	$0.483 {\pm} 0.012$	0.647 ± 0.036	0.725 ± 0.029	0.181 ± 0.037	0.714 ± 0.007	0.560 ± 0.030	0.654 ± 0.025	0.637 ± 0.011
ML^2	0.358 ± 0.027	0.661 ± 0.039	0.782 ± 0.026	0.057 ± 0.021	0.722 ± 0.008	0.645 ± 0.028	0.788 ± 0.029	0.641 ± 0.014
CLR	0.326 ± 0.019	0.614 ± 0.037	0.598 ± 0.157	0.176 ± 0.049	0.624 ± 0.010	0.525 ± 0.019	0.612 ± 0.026	0.628 ± 0.012
RAKEL	0.355 ± 0.018	0.634 ± 0.031	0.685 ± 0.031	0.148 ± 0.027	0.613 ± 0.015	0.540 ± 0.011	0.636 ± 0.023	0.632 ± 0.009

Table 3: Predictive performance of each comparing algorithm (mean \pm std. deviation) on the large-scale data sets.

Comparing				One-error↓			
algorithms	slashdot	corel5k	rcv1subset1	rcv1subset2	rcv1subset3	rcv1subset4	rcv1subset5
MLFE	0.372 ± 0.020	0.646 ± 0.021	0.413 ± 0.013	0.463 ± 0.014	0.472 ± 0.023	0.453 ± 0.020	0.445 ± 0.015
LIFT	0.397 ± 0.026	0.669 ± 0.014	0.415 ± 0.019	0.455 ± 0.012	0.473 ± 0.020	0.457 ± 0.022	0.445 ± 0.017
RELIAB	0.516 ± 0.017	0.718 ± 0.015	0.467 ± 0.020	0.476 ± 0.011	0.477 ± 0.024	0.462 ± 0.015	0.467 ± 0.017
ML^2	$0.363 {\pm} 0.018$	0.627 ± 0.023	0.396 ± 0.021	$0.448 {\pm} 0.014$	0.461 ± 0.020	$0.438 {\pm} 0.017$	0.437 ± 0.017
CLR	0.979 ± 0.005	0.741 ± 0.018	0.501 ± 0.027	0.507 ± 0.019	0.533 ± 0.037	0.499 ± 0.017	0.503 ± 0.018
RAKEL	0.615 ± 0.020	0.872 ± 0.014	0.623 ± 0.023	0.592 ± 0.017	0.598 ± 0.018	0.592 ± 0.013	0.595 ± 0.021
Comparing				Coverage ↓			
algorithms	slashdot	corel5k	rcv1subset1	rcv1subset2	rcv1subset3	rcv1subset4	rcv1subset5
MLFE	0.117 ± 0.008	0.263 ± 0.013	0.100 ± 0.007	0.094 ± 0.005	0.096±0.004	0.081 ± 0.006	0.094 ± 0.006
LIFT	0.107 ± 0.009	0.286 ± 0.013	0.132 ± 0.009	0.139 ± 0.006	0.142 ± 0.006	0.120 ± 0.009	0.134 ± 0.004
Reliab	0.134 ± 0.005	0.300 ± 0.011	0.137 ± 0.009	0.121 ± 0.005	0.125 ± 0.006	0.113 ± 0.011	0.119 ± 0.006
ML^2	0.101 ± 0.007	0.288 ± 0.012	0.110 ± 0.008	0.105 ± 0.007	0.109 ± 0.005	0.088 ± 0.007	0.108 ± 0.007
CLR	0.258 ± 0.009	0.287 ± 0.015	0.112 ± 0.008	0.105 ± 0.006	0.114 ± 0.024	0.095 ± 0.007	0.107 ± 0.006
RAKEL	0.218 ± 0.012	0.874 ± 0.012	0.417 ± 0.012	0.359 ± 0.022	0.369 ± 0.014	0.358 ± 0.020	0.363 ± 0.015
Comparing				Ranking loss↓			
algorithms	slashdot	corel5k	rcv1subset1	rcv1subset2	rcv1subset3	rcv1subset4	rcv1subset5
MLFE	0.098 ± 0.008	0.109 ± 0.006	0.039 ± 0.003	0.039 ± 0.002	0.040 ± 0.002	0.034 ± 0.003	0.038 ± 0.002
LIFT	0.092 ± 0.008	0.122 ± 0.005	0.053 ± 0.003	0.059 ± 0.002	0.062 ± 0.002	0.051 ± 0.004	0.055 ± 0.002
RELIAB	0.118 ± 0.005	0.130 ± 0.005	0.058 ± 0.003	0.045 ± 0.002	0.052 ± 0.002	0.047 ± 0.004	0.048 ± 0.002
ML^2	0.084 ± 0.006	0.163 ± 0.008	0.042 ± 0.003	0.043 ± 0.003	0.046 ± 0.003	0.037 ± 0.003	0.043 ± 0.003
CLR	0.245 ± 0.010	0.131 ± 0.008	0.048 ± 0.002	0.046 ± 0.002	0.054 ± 0.020	0.044 ± 0.002	0.046 ± 0.003
RAKEL	0.198 ± 0.013	0.586 ± 0.011	0.233 ± 0.007	0.209 ± 0.012	0.222 ± 0.009	0.224 ± 0.013	0.209 ± 0.012

Table 3: Predictive performance of each comparing algorithm (mean \pm std. deviation) on the large-scale data sets.

Comparing				Average precision ↑			
algorithms	slashdot	corel5k	rcv1subset1	rcv1subset2	rcv1subset3	rcv1subset4	rcv1subset5
MLFE	0.715 ± 0.015	0.316 ± 0.012	0.615 ± 0.010	0.622 ± 0.006	0.614 ± 0.013	0.640 ± 0.013	0.626 ± 0.007
LIFT	0.695 ± 0.019	0.291 ± 0.010	0.582 ± 0.013	0.579 ± 0.008	0.569 ± 0.010	0.596 ± 0.010	0.586 ± 0.009
Reliab	0.610 ± 0.012	0.269 ± 0.009	0.563 ± 0.010	0.588 ± 0.009	0.586 ± 0.013	0.611 ± 0.010	0.586 ± 0.009
ML^2	$0.728 {\pm} 0.015$	0.315 ± 0.013	0.629 ± 0.013	0.630 ± 0.008	0.622 ± 0.011	0.647 ± 0.014	0.631 ± 0.006
CLR	0.261 ± 0.006	0.247 ± 0.009	0.564 ± 0.012	0.579 ± 0.011	0.554 ± 0.050	0.589 ± 0.013	0.576 ± 0.012
RAKEL	0.516 ± 0.012	0.120 ± 0.007	0.391 ± 0.009	0.429 ± 0.010	0.423 ± 0.010	0.431 ± 0.011	0.421 ± 0.012
Comparing]	Macro-averaging F1 1	↑		
algorithms	slashdot	corel5k	rcv1subset1	rcv1subset2	rcv1subset3	rcv1subset4	rcv1subset5
MLFE	$0.455 {\pm} 0.048$	0.338 ± 0.014	0.282 ± 0.024	0.263 ± 0.023	0.243 ± 0.021	0.290 ± 0.036	0.265 ± 0.024
LIFT	0.427 ± 0.036	0.324 ± 0.014	0.219 ± 0.038	0.163 ± 0.020	0.151 ± 0.020	0.203 ± 0.034	0.165 ± 0.022
Reliab	0.433 ± 0.047	0.303 ± 0.019	0.332 ± 0.026	0.332 ± 0.023	0.333 ± 0.022	0.335 ± 0.039	0.332 ± 0.012
ML^2	0.424 ± 0.050	0.331 ± 0.015	0.228 ± 0.025	0.225 ± 0.020	0.216 ± 0.019	0.263 ± 0.037	0.232 ± 0.020
CLR	0.165 ± 0.035	0.276 ± 0.015	0.278 ± 0.028	0.269 ± 0.016	0.255 ± 0.035	0.297 ± 0.023	0.286 ± 0.013
RAKEL	0.363 ± 0.033	0.257 ± 0.013	0.266 ± 0.029	0.237 ± 0.024	0.243 ± 0.023	0.256 ± 0.020	0.255 ± 0.016
Comparing			1	Micro-averaging F1 1	1		
algorithms	slashdot	corel5k	rcv1subset1	rcv1subset2	rcv1subset3	rcv1subset4	rcv1subset5
MLFE	0.550 ± 0.016	0.177 ± 0.015	0.411 ± 0.011	0.411 ± 0.011	0.397 ± 0.016	0.426 ± 0.013	0.414 ± 0.010
LIFT	0.509 ± 0.020	0.077 ± 0.011	0.311 ± 0.020	0.297 ± 0.013	0.289 ± 0.014	0.327 ± 0.019	0.314 ± 0.012
RELIAB	0.449 ± 0.014	0.226 ± 0.010	0.417 ± 0.007	0.468 ± 0.011	0.431 ± 0.013	$0.485 {\pm} 0.009$	0.466 ± 0.009
ML^2	0.531 ± 0.015	0.126 ± 0.016	0.378 ± 0.016	0.383 ± 0.014	0.377 ± 0.017	0.411 ± 0.012	0.394 ± 0.015
CLR	0.008 ± 0.003	0.123 ± 0.019	0.361 ± 0.008	0.356 ± 0.015	0.338 ± 0.029	0.365 ± 0.017	0.368 ± 0.014
RAKEL	0.362 ± 0.014	0.135 ± 0.009	0.341 ± 0.008	0.337 ± 0.008	0.335 ± 0.012	0.349 ± 0.010	0.350 ± 0.010

- Background
- Introduction
- Approach
- Experiments
- Conclusion

Conclusion

- A novel approach is proposed to learning from multi-label data by leveraging the structural information in feature space.
- The key strategy is to convey the structural information modeled by sparse reconstruction in feature space to facilitate generating enriched labeling information in output space.
- The effectiveness of feature-induced labeling information enrichment is clearly validated with extensive experiments on benchmark multi-label data sets.