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Low-Rank Matrix Recovery and Completion via Convex Optimization

Problem Description

Rank-r matrix A of size m x n, where r << min(m,n). Model the observed matrix D to be a set of linear
measurements on the matrix A, subject to noise and gross corruptionsi.e., D=L(A) +n, where Lis a
linear operator, and n represents the matrix of corruptions. We seek to recover the true matrix A from D.

Matrix of corrupted observations Underlying low-rank matrix Sparse error matrix



L is the identity operator and the entries of n are independent and identically
PCA distributed according to aisotropic Gaussian distribution, then classical PCA
provides the optimal estimate to A.

Matrix Completion

n is zero, L is the matrix subsampling operator, the problem is to use information from some
entries of A to infer its missing entries.

nuclear norm: the sum of the
minrank(X) s.t. L(X) =D singular values of the matrix

mXinIIXII* s.t. L(X)=D rank(474) = rank(44") = rank(4) AYA = ¢2u



Robust PCA

[ c—

L is the identity operator and n is a sparse matrix, the problem is to find the matrix of lowest
rank that could have generated D when added to an unknown sparse matrix n.

convex relaxation
r)r(liEnrank(X) +YEllg St. D=X4E c—— r)r(liEnllel* +yIE|l; s.t. D=X+E

The Augmented Lagrange Multiplier method for exact recovery of corrupted low-rank matrices

[ E—

The general method of augmented Lagrange multipliers is introduced for solving constrained
optimization problems of the kind:

min £(X) s.t. h(X) =0 L(X,Y, 1) = £(X) + (Y, h(X)) + g 1RO

(Y,h(X)) = tr(YTh(X))
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Algorithm 3 (General Method of Augmented Lagrange Multiplier)

:p = 1.
: while not converged do
Solve X1 = arg n}}n L(X,Ye, pr).

1
2
3
4 Yip1=Yr + peh(Xg41);
5
6

/////////////HI

Update pg to prgy1.
: end while
Output: Xj.

min f(X) s.t. h(X) = 0 LX,Y, 1) = f(X) + (Y, h(X)) + g 1RO

min|[X]l. +yllEll, s.t. D=X+E

u
LXEY,w)=|IXIl. +yIE|l, + (Y, D — X — E) — SID —X - A



Robust Subspace Segmentation by Low-Rank Representation ICML 2010

o)

Problem

Given a set of sufficiently dense data vectors X = [x4, x,, ..., x,] (each column is a sample) drawn
from a union of k subspaces {S;}_, of unknown dimensions, in a D-dimensional Euclidean space,
segment all data vectors into their respective subspaces.

o)

Assumption

k
The subspaces are low-rank and independent, and the data is noiseless. Z S; =@®F . S;
i=1

A fraction of the data vectors are corrupted by noise or contaminated by outliers, or to be more
precise, the data contains sparse and properly bounded errors.
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Low-Rank Representation

Consider data vectors X = [xq, x5, ..., x,] , x; € RP , each of which can be represented by the
linear combination of the basis in a dictionary A = [a4, ay, ..., 4, ]

X=AZ Z = 2zq4,29, ..., Zy]

[2009]Sparse representations using an appropriate dictionaries A may reveal the clustering of the
points x;. However, sparse representation may not capture the global structures of the data X. Low
rankness may be a more appropriate criterion.

mZin rank(Z) s.t. X =AZ

a good surrogate
mZin||Z||* s.t. X =AZ




The Basic Messages

X=loagox] S35, A mak, X = [X1, X, 0, Xi]

In order to segment the data into their respective subspaces, we need to compute an affinity
matrix that encodes the pairwise affinities between data vectors. So we use the data X itself
as the dictionary.

mZin||Z||* s.t. X =XZ

There always exist feasible solutions even when the data sampling is insufficient.

Theorem 3.1
Z: 0 0 0
Assume that the data sampling is sufficient such that n; > =0 Z2 0 0
rank(X;) = d;. If the subspaces are independent then there o 0 =~ 0
exists an optimal solution Z*. L0 0 0 Zd ..




Theorem 3.1 does not guarantee that an arbitrary optimal solution to the problem is block-
diagonal. The difficulty is essentially that the minimizer is non-unique. However, in our

simulations we have observed that the solution obtained is always block-diagonal, and so we do
not pursue this here.

Robustness to Noise and Outliers

n n
2
min ||Z||. + A|E|l,; st X=XZ+E IEll21 = z \/Z (Eij)
Z,E ’ j=1 i=1
recover data
X=X +X
In the case that the remainder clean data is still sufficient to represent the subspaces, and the

corruptions are properly bounded, it shall automatically correct the corruptions so as to obtain
the lowest-rank representation.



(a), Corrupted Data (b), Z (c), Corrected Data

There are about 80 data vectors sampled from two one-dimensional subspaces embedded in R3,
and about 25% data vectors are corrupted by large Gaussian errors.

sufficient — it shall automatically correct the corruptions so as to
bounded obtain the lowest-rank representation.
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min ||Z||. + AlEllz: st X =XZ+E “ min|J|l. + 2lEllz; st X=XZ+EZ=]

2 _ALM > min f(X) s.t. h(X) =0 LX,Y,w =f(X)+(Y,h(X)>+gI|h(X)II%

: u
ommin (U1, + AElly, + erlY (X = XZ + )] + trlYy (Z = D +5 (X = XZ + Ellf +11Z = JIIF)
WL, ), 11,12

1. fix the others and update J 2. fix the others and update Z 3. fix the others and update E

4. update the multipliers Y3, Y, 5. update the parameter u 6. check the convergence conditions

| X —XZ —El||l <€ and ||IZ — ]|l < €

min|ZI], + 2Bl + tr[Y" (X = XZ + )] +5 (IX = XZ + EII?)

I X —XZ —FEl||le, <€ and ||ZttY = ZY|, < €



RN

SRy: min||Z]||; +AlEIl; st X=XZ+E,Z; =0
“E &1#PCA

SRyy: min||Z||; + A|lEll1  s.t. X =XZ+E,Z; =0
ZE min[lX|l. +yllEll, s.t. D=X+E

N m
Iells = > I 121l = max " |21
i=1 J i=1

KB FRRLRR min ||Z]|. + AllEllz, st X =XZ +E



Algorithm 2 Subspace Segmentation by LRR

Input: data matrix X, number of subspaces £

1. obtain the lowest-rank representation by solving
problem (5)

2. construct an undirected graph by using the lowest-
rank representation to define the affinity matrix of the
egraph

3. use NCut to segment the vertices of the graph into £
clusters
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Some examples of using LRR to
correct the corruptions in faces.




Latent Low-Rank Representation for Subspace Segmentation and Feature Extraction
ICCV 2011

mZin||Z||* s.t. Xo = XoZ
Zy =1
* cannot use X, as the dictionary to represent the subspaces if the data sampling is insufficient.

* LRR requires that sufficient noiseless data is available in the dictionary A, i.e., only a part of A is
corrupted. this assumption may be invalid and the robustness of LRR may be depressed in reality.

mzln”Z”* S.t. XO = [Xo,XH]Z

X, is the observed data matrix and X represents the unobserved, hidden data

Zou = [ZS|H;Z:I|O]
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Problem 1 (Noiseless Data)

len“Z“* S.t. XO = [Xo,XH]Z
Problem 2(Corrupted Data)
rrZﬂEnllZII* + A|E|l; s.t. Xp = |Xp, XylZ + E

Suppose Zg y = [Zng; Z;_}IO] is the optimal solution (with respect to the variable Z) and Z,;, is the submatrix
corresponding to X,, then our goal is to recover by using only the observed data X, .

a
v

[Xo, Xyl = USVT = UX[Vy; Vy]T Xo = UV} Xy = UsVE

UVt =uxvTz Vi =vTz

a unique minimizer [PAMI2013] . . . .
mZinIIZII* s.t. Xp = [Xo,XylZ >  Zon=VVy =[VoV5;VyVp]
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Xo = (X0, XulZo5 = XoZom + XuZo = XoZoy + XuVuVo Lyjo = UV V2~ tU”

= XoZpyy + ULV VyVs = XoZp)y + UV VEETTUT X, Xo = XoZpy + LiyjoXo

X, and Xy are sampled from the same collection of low-rank subspaces

rank(Zpy) <rv and  rank(Ly) <7

min[|Z]l. s.t. X, = [Xo,Xy]Z min[|Z||. + lILIl. s.t.X = XZ + LX

min rank(Zo|H) + rank(Lyp) s.t. Xo = XoZojm + LujoXo
Zo|H,.LH|0



mZinllle* s.t.X =XZ Z mLin||L||* s.t.X =LX L

[PAMI2013] |IZ3|l, = rank(X) = rank(XT) = ||L; ||, So the strengths of L and Z are balanced naturally.

{§30  {U°. (U1 =TU)), Tisarandom rotation and U; € R200%10
tJi=1 tJi=1 +

XO — [Xl,Xz, "'IX].O] Xi - UiCi' 1 < [ < 10 h|dden mat”X XH(ZOO X 50)

mZinIIZII* s.t. Xo = [Xo,XylZ mzin”Z”* s.t. Xp = XpZ rrzliLnllZII* +|IL|l, s.t.X=XZ+LX

Example




Corrupted Data
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In summary, let (Z*, L*, E*) be the minimizer, then Z*, L* are useful for subspace segmentation
and feature extraction, respectively.

Subspace Segmentation

Utilize the affinity matrix identified by to define edge weights of an undirected graph, and then
use Normalized Cuts (NCut) [23] to produce the final segmentation results.

Comparison under the same setting
LSA RANSAC SR LRR LatLRR
Mean  8.99 8.22 3.89  3.16 2.95
Std. 9.80 10.26 7.70  5.99 5.86
Max  37.74 47.83 32.57 3743  37.97

Comparison to state-of-the-art methods
LSA ALC SSC SC  LatLRR
Mean 4.94 3.37 1.24 1.20 0.85




Feature Extraction

L* may be useful for feature extraction, and

experimentally find that L* is able to extract “salient
features” (i.e., notable features such as the eyes of
faces) from data.

y=Lx
9y T I
—8— PCA
80 —5=LPP
—&— NPE

<70 —~p—NMF |
°; —&— LatLRR
o e
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The salient features correspond to the key
object parts (e.g., the eyes), which are usually
discriminative for recognition

X = X7 + L'X + E’

data = principal features + salient features + sparse noise




Suppose P is a low-dimensional projection learnt by using L*x as inputs for some

dimension reduction methods, the reduced feature vector y of a testing data vector x can be

computed by y = PTL*x.

Raw Data  PCA LPP NPE NMF  LatLRR LatLRR +
(317D) (83D) (325D) (195D) PCA(400D) LPP(52D) NPE(400D)
1-NN 61.07 61.54 8046  79.28 84.69 88.76 87.28 87.60 82.18
3-NN 59.81 60.03 7873  79.28 84.07 87.76 85.95 87.13 81.71
5-NN 58.16 5854  76.69  76.69 82.58 86.03 85.87 85.56 80.85

Conclusions

LatLRR extends LRR to handle the hidden effects

As a subspace segmentation algorithm, LatLRR outperforms the state-of-the-art
algorithms for motion segmentation.

Be empirically able to automatically extract salient features from corrupted data.

Compared to dimension reduction based methods, LatLRR is more robust to noise.




Integrated Low-Rank-Based Discriminative Feature Learning for Recognition
TNNLS 2016

The basic idea is to utilize the supervised information, e.g., the labels of training samples, to
learn discriminative features LX resulting from the LatLRR model.

Theorem _
complete solutions

rg’iLnllZII* HLIL St X =XZ + LY com—- 7% =/, (] — S)VT and L* = UySUT

SVD(X) = UyXyUL S is any block-diagonal matrix that satisfies two constraints:

1) its blocks are compatible with X, i.e., If (Zx);;# (Zx);;, then S;; =0
2) both S and I — S are positive semidefinite.

Note that S can usually be chosen as diagonal with diagonal entries being any number between 0 and 1.



| m UX € Rdxr S € Rrxr
min » 1<p(hi, fLx;, W) + al|W||7
) L=

— T
s.t. L= UXSUX f(x’ W) — WX, W € chd

i 2 2
min|| — WLX||r + a||W||F H = [y, h, .. hy] € RO
s.t. L =UySUL h; =[0,0,...,1,..,0,0]" € R®

a

solve

1) the singular values of the data matrix X are usually distinct from each other, i.e.
(Zx)u# (Zx)jj, when S;; = 0.

2) since only focus on learning the discriminative features, the constraint that I — S is
positive semidefinite is not necessary, so, only need to bound S;; > 0.

\ 4



diag(A) = (S11, S22, -, S7, 0,0, ...,0) € R A € R4*4

L = UxSU;} = UAUT vuT =uTu=vvT =1

|H — WLX||% + a||W||% = ||[H = WUAUTUZVT||% + a||[W||2

= ||[HV — WUAZ||Z + a||W ||z = [HV — WUAZ||% + a|[WU||#

IH — WLXI3 + al|W|[2 = |H - WAZ|[ + a||W||3

r - - 2 m —_ 2 r - ) m - )
= E _ ||Hi—5ii0iWi||2+ E _ ||Hi||2+05 E W + e E Wz
=1 1=r+1 =1 1=r+1

~

Wy=0,i=r+1,..,m




. r ~ ~ 112 ~ ]
iy 2 (”Hi — SuoWi|, + OfIIWiH%) s.6.8;=0,i=1.2,..,7
S11yenSrr Ldjmq 2
W Wy

T T
Z. 1Sii =t Z 1Sii0i =t g = 51101, ---:Srrar]T Q= [51101W1: ---»Srrarvvr]
l= 1=
r - 2 04 ) r
min H;, —0O;|l. + —=1|0; s.t.z =t g;=0,i=1,2,..,r
wn Y. (I - @l + ) a=t g
fix g update of Q — minll i 2 @ ,__ 9 . _
Qi = minl| A = Qil, + 7 l1@ills = 7 A i=12,..,7
. r a 2 r .
fix Q update of g argmlnz_ — 1Q;112 s.t.z_ 9i=t9;=0,i=12,..,r
gi i=149; i=1




x4

g =) Slalk+e(} a-t)
=19

2/3
oL 2a||Ql|| —0 zr g;i =1 gi = dLule 2/3
o g T =1 o]
Oj gi

a
v

[Neural Comput. 2015] proposed denoise X first, apply the noiseless LRR or the LatLRR to the denoised data.

min(|Z|l. + |ILll. + AlENy s.t.X —E=X—-E)Z+L(X - E)

[Neural Comput. 2015] proved solving the above problem is equivalent to denoising X with the robust PCA
first to obtain (A, E), and then solving noiseless LatLRR with X replaced by A.



Let the pair (4%, E*) be any optimal solution to the robust PCA problem. Then, the new noisy
LatLRR model has minimizers (4* L*,E*) where  Z* =V,(I - )V} L*=U,SU}

> Robust PCA > IEiEHHX”* +vy|E|l;y s.t. D=A+E
1) Xur = Ag = U2 Ve Ats = U U Xes 2)Ztr Zis W
m 2
minllZIl. + ILIl. s.t.X = XZ + LX min ) ¢(h f(Lx, W) + al W[
' o) s.t. L =UySUY

Active Learning
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Limited budget
Active Learning via
' Transductive Experimental Design

The goal of experimental design is to find a set of experiments x; that together are maximally
informative.

Cold start ?

X:[xg, e, X ]TER™C X =m V:[vy,..,v,]T€ R™?, [V|=n

min {J(w) — Z (WTX?; — ’yi)2 + ,U,WQ} Cw = ( 9J(w) )_1 — (XX 4+ pu1n)~t

w P Owow "

f =|f(vy, ..., f(vy))] be the function values on all the available data V, the predictive error f — f has the
covariance matrix o2 Cs
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Cr=VCywV' =V(X'X+puI) VT max  Tr VX' (XX +pu)7'XV'

1 T T T Ay T X
T {VV - VXXX ul) XV } subject to X C V,|X|=m

n}(axTr[Vng(Xng +UDTHXYy  e— = (LX)T V, = (LV)T L= USUT

/= Rdxn X e Rdxm
rgl(é}dx TT[VTLTLX(XTLTLX + ,ul)_l]XTLTLV s.t. L=USUT

= max Tr[VTUS?UTX(XTUS?UTX + ul)~Y|XTUS?*UTV
X=VP s.t.X € R zpij =1 zpij <1 ZPU =m
[ j i,j

max TrvTus?uTve(PTVTUS?2UTVP + u)~1PTVTUS?UTY s.t. P,S



Z lvi = X ayl? + pllag|? subject to X C V. [X|=m A=]lay,...,
i=1

L(X,A) = ||V — AX||2 + uTr(AAT) = Tr[(V — AX)(V — AX)T] + uTr(AAT)
= Tr[VVT — AXVT —VXTAT + AXXTAT + uAA"]

= Tr[VVT] — Tr[AXVT + VXTAT — A(XXT + ul)AT]

JdL(X, A
(A' )=O — A* :VXT(XXT-|—#[)_1

min||V — AX||% + g Tr(AAT) =Tr(VV ) — Tr [VXT(XXT + ,u.I)_lXVT]

max 7 {VXT(XXT + MI)*XVT}

subject to X C V,|X|=m
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min||[V — AX||% + uTr(AAT) =Tr(VVT) — Tr [VXT(XXT D)XV

min|[V, — AV,PIIE + ullAllg = min|[V'L" — AVTLTP|IE + pllAllE,s.t.L = USUT V = UZV]

min||V,ZSUT — AVISUTP||2 + ullAll2

L =USUT = UAUT diag(A) = (S11,522, .., Sy, 0,0,...,0) €RY A € RY¥4

fix P,S upda’[e A — fix AS update P

fix P, A update S



Early Active Learning via Robust Representation and Structured Sparsity
IJCAI 2013

The key idea of TED is to select the samples that can best represent the whole data using a linear
representation.

min XL, (x; — Balls +vllally) s.t.A=l[ay,..,an] € R™", B cX,|B| =m

The TED objective minimizes the least square error, hence it is sensitive to the data outliers. To
solve these two deficiencies, we formulate the early active learning problem using the structured
sparsity-inducing norms and propose a new robust formulation with efficient optimization algorithm.

n
min > (v = Xail3 +ylelld) s.t.4 =gy, .. an] € R 1Al
) l=1

n
min ) (ki = Xayll + ¥ 114110)
1=

|All2 1 is the minimum convex hull of [|4]|, o, and when A is row-sparse enough, one can always
minimize [|A]|, 1 to obtain the same result of minimizing [|A]|; .



n
mAinz- 1(||xi - Xai”% + )/||A||2,1) = mAin”(X - XA)T”% + V“A”2,1
1=

J=min [[(X = XA)Tllz,1+vllAll2,1

Yale data
g

.................
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L1-norm is imposed among data points and the L2-norm is used for features
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n
9 min Y (Il = Xaill3 + llAll,) = minl (X = XA I3 + llAl
IJCAI 2013 I A i=1( ¥ iz TV 2’1) A 2 TY 2,1

[ c—

] = m[}n I(X — XA) " 1 +vIIAll21

(b), Z

ICML 2010

[ CE—

0.35

(b) Learned matrix A

0.3

min |[|Z]], s.t. X =XZ
Z 10.25
10.2
min NZ|l. + 2Ell;1 st X=XZ+E i

0.1

0.05

min A||X — XZ|lz,1 + |1Z]].

SIGIR 08 g nin > lxi = Xe el +) Og’,j +708l  subject to x; € Xp, 3, >0, j=1,--- N
J

M N 2
=1 i—1 J



] = mAin |(Xo — X0 D) 21 +VIIAll 21 X, € R¥*™ A € R

X, =LX L=USUT = UAUT
min [[(LX = LX) ll,1+VIlAll,1 = min [(USEVT = USEVTAYT |1 +VIIAll,

min||,ZSUT — AVISUTP|IZ + pllAll7

1) Cx)ii# Zx)jj, when S;; = 0. 2) SandI — S are positive semidefinite

since only focus on learning the discriminative features, the constraint that I — S is positive
semidefinite is not necessary, so, only need to bound S;; > 0.

Kernel Extension J = min 1(p(X0) — d (X)) Tl 1+V Al 4

=min [[(p(USZV") = ¢USZV A ll21 +v 1Al



