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Low-Rank Matrix Recovery and Completion via Convex Optimization

Problem Description

Rank-r matrix A of size m x n, where r << min(m,n). Model the observed matrix D to be a set of linear 

measurements on the matrix A, subject to noise and gross corruptions i.e., D = L(A) + η, where L is a 

linear operator, and η represents the matrix of corruptions. We seek to recover the true matrix A from D.



Matrix Completion

PCA

η is zero, L is the matrix subsampling operator, the problem is to use information from some 

entries of A to infer its missing entries.

min
𝑋

rank(𝑋) 𝑠. 𝑡. 𝐿 𝑋 = 𝐷

min
𝑋

𝑋 ∗ 𝑠. 𝑡. 𝐿 𝑋 = 𝐷

nuclear norm: the sum of the 

singular values of the matrix

L is the identity operator and the entries of η are independent and identically 

distributed according to a isotropic Gaussian distribution, then classical PCA 

provides the optimal estimate to A. 

rank 𝐴𝐻𝐴 = rank 𝐴𝐴𝐻 = rank 𝐴 𝐴𝐻𝐴 = 𝜎2𝑢



Robust PCA

L is the identity operator and η is a sparse matrix, the problem is to find the matrix of lowest 

rank that could have generated D when added to an unknown sparse matrix η. 

min
𝑋,𝐸

rank 𝑋 + 𝛾 𝐸 0 𝑠. 𝑡. 𝐷 = 𝑋 + 𝐸

convex relaxation

min
𝑋,𝐸

𝑋 ∗ + 𝛾 𝐸 1 𝑠. 𝑡. 𝐷 = 𝑋 + 𝐸

The general method of augmented Lagrange multipliers is introduced for solving constrained 

optimization problems of the kind:

The Augmented Lagrange Multiplier method for exact recovery of corrupted low-rank matrices

min𝑓 𝑋 𝑠. 𝑡. ℎ 𝑋 = 0 𝐿 𝑋, 𝑌, 𝜇 = 𝑓 𝑋 + 𝑌, ℎ(𝑋) +
𝜇

2
ℎ(𝑋) 𝐹

2

𝑌, ℎ(𝑋) = 𝑡𝑟(𝑌𝑇ℎ(𝑋))



min
𝑋,𝐸

𝑋 ∗ + 𝛾 𝐸 1 𝑠. 𝑡. 𝐷 = 𝑋 + 𝐸

min𝑓 𝑋 𝑠. 𝑡. ℎ 𝑋 = 0 𝐿 𝑋, 𝑌, 𝜇 = 𝑓 𝑋 + 𝑌, ℎ(𝑋) +
𝜇

2
ℎ(𝑋) 𝐹

2

𝐿 𝑋, 𝐸, 𝑌, 𝜇 = 𝑋 ∗ + 𝛾 𝐸 1 + 𝑌,𝐷 − 𝑋 − 𝐸 −
𝜇

2
𝐷 − 𝑋 − 𝐸 𝐹

2
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Given a set of sufficiently dense data vectors 𝑋 = [𝑥1, 𝑥2, … , 𝑥𝑛] (each column is a sample) drawn 

from a union of k subspaces {𝑆𝑖}𝑖=1
𝑘 of unknown dimensions, in a D-dimensional Euclidean space, 

segment all data vectors into their respective subspaces.

Problem

The subspaces are low-rank and independent, and the data is noiseless.

A fraction of the data vectors are corrupted by noise or contaminated by outliers, or to be more 

precise, the data contains sparse and properly bounded errors.

෍
𝑖=1

𝑘

𝑆𝑖 =⊕𝑖=1
𝑘 𝑆𝑖

Assumption



Low-Rank Representation

Consider data vectors 𝑋 = 𝑥1, 𝑥2, … , 𝑥𝑛 , 𝑥𝑖 ∈ 𝑅𝐷 , each of which can be represented by the 

linear combination of the basis in a dictionary A = 𝑎1, 𝑎2, … , 𝑎𝑚

𝑋 = 𝐴𝑍 𝑍 = 𝑧1, 𝑧2, … , 𝑧𝑛

[2009]Sparse representations using an appropriate dictionaries 𝐴 may reveal the clustering of the 

points 𝑥𝑖. However, sparse representation may not capture the global structures of the data 𝑋. Low 

rankness may be a more appropriate criterion.

min
𝑍

rank 𝑍 s. t. 𝑋 = 𝐴𝑍

a good surrogate

min
𝑍

||𝑍||∗ s. t. 𝑋 = 𝐴𝑍



𝑋 = 𝑥1, 𝑥2, … , 𝑥𝑛 {𝑆𝑖}𝑖=1
𝑘 {𝑑𝑖}𝑖=1

𝑘 {𝑛𝑖}𝑖=1
𝑘 𝑋 = 𝑋1, 𝑋2, … , 𝑋𝑘

In order to segment the data into their respective subspaces, we need to compute an affinity 

matrix that encodes the pairwise affinities between data vectors. So we use the data 𝑋 itself 

as the dictionary.

The Basic Messages 

min
𝑍

||𝑍||∗ s. t. 𝑋 = 𝑋𝑍

There always exist feasible solutions even when the data sampling is insufficient.

Theorem 3.1

Assume that the data sampling is sufficient such that 𝑛𝑖 >
𝑟𝑎𝑛𝑘 𝑋𝑖 = 𝑑𝑖. If the subspaces are independent then there 

exists an optimal solution 𝑍∗.

𝑍∗ =

𝑍1
∗ 0 0 0

0 𝑍2
∗ 0 0

0 0 ⋱ 0
0 0 0 𝑍𝑘

∗
𝑛×𝑛



Theorem 3.1 does not guarantee that an arbitrary optimal solution to the problem is block-

diagonal. The difficulty is essentially that the minimizer is non-unique. However, in our 

simulations we have observed that the solution obtained is always block-diagonal, and so we do 

not pursue this here.

Robustness to Noise and Outliers

min
𝑍,𝐸

||𝑍||∗ + 𝜆 𝐸 2,1 s. t. 𝑋 = 𝑋𝑍 + 𝐸 𝐸 2,1 =෍
𝑗=1

𝑛

෍
𝑖=1

𝑛

𝐸𝑖𝑗
2

(𝑍∗, 𝐸∗) 𝑋 − 𝐸∗/𝑋𝑍∗
recover data

In the case that the remainder clean data is still sufficient to represent the subspaces, and the 

corruptions are properly bounded, it shall automatically correct the corruptions so as to obtain 

the lowest-rank representation.

𝑋 = 𝑋𝑙 + 𝑋𝑐



There are about 80 data vectors sampled from two one-dimensional subspaces embedded in 𝑅3, 

and about 25% data vectors are corrupted by large Gaussian errors.

it shall automatically correct the corruptions so as to 

obtain the lowest-rank representation.

sufficient

bounded



min
𝑍,𝐸

||𝑍||∗ + 𝜆 𝐸 2,1 s. t. 𝑋 = 𝑋𝑍 + 𝐸 min
𝑍,𝐸,𝐽

||𝐽||∗ + 𝜆 𝐸 2,1 s. t. 𝑋 = 𝑋𝑍 + 𝐸, 𝑍 = 𝐽

min 𝑓 𝑋 𝑠. 𝑡. ℎ 𝑋 = 0 𝐿 𝑋, 𝑌, 𝜇 = 𝑓 𝑋 + 𝑌, ℎ(𝑋) +
𝜇

2
ℎ(𝑋) 𝐹

2ALM

min
𝑍,𝐸,𝐽,𝑌1,𝑌2

𝐽
∗
+ 𝜆 𝐸 2,1 + 𝑡𝑟 𝑌1

𝑇 𝑋 − 𝑋𝑍 + 𝐸 + 𝑡𝑟 𝑌2
𝑇 𝑍 − 𝐽 +

𝜇

2
( 𝑋 − 𝑋𝑍 + 𝐸 𝐹

2 + 𝑍 − 𝐽 𝐹
2)

1. fix the others and update J 2. fix the others and update Z 3. fix the others and update E

4. update the multipliers 𝑌1, 𝑌2 5. update the parameter 𝜇 6. check the convergence conditions

𝑋 − 𝑋𝑍 − 𝐸 ∞ < 𝜀 𝑎𝑛𝑑 𝑍 − 𝐽 ∞ < 𝜀

min
𝑍,𝐸,𝑌

𝑍
∗
+ 𝜆 𝐸 2,1 + 𝑡𝑟 𝑌𝑇 𝑋 − 𝑋𝑍 + 𝐸 +

𝜇

2
( 𝑋 − 𝑋𝑍 + 𝐸 𝐹

2)

𝑋 − 𝑋𝑍 − 𝐸 ∞ < 𝜀 𝑎𝑛𝑑 𝑍𝑡+1 − 𝑍𝑡 ∞ < 𝜀



𝑆𝑅1: min
𝑍,𝐸

||𝑍||1 + 𝜆 𝐸 1 s. t. 𝑋 = 𝑋𝑍 + 𝐸, 𝑍𝑖𝑖 = 0

𝑆𝑅2,1: min
𝑍,𝐸

||𝑍||1 + 𝜆 𝐸 2,1 s. t. 𝑋 = 𝑋𝑍 + 𝐸, 𝑍𝑖𝑖 = 0

𝑍 1 = max
𝑗

෍
𝑖=1

𝑚

|𝑍𝑖,𝑗|𝑥 1 =෍
𝑖=1

𝑁

|𝑥𝑖|

min
𝑋,𝐸

𝑋 ∗ + 𝛾 𝐸 1 𝑠. 𝑡. 𝐷 = 𝑋 + 𝐸

min
𝑍,𝐸

||𝑍||∗ + 𝜆 𝐸 2,1 s. t. 𝑋 = 𝑋𝑍 + 𝐸

稀疏表示

鲁棒PCA

低秩稀疏表示LRR



Some examples of using LRR to 

correct the corruptions in faces.
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cannot use 𝑋𝑜 as the dictionary to represent the subspaces if the data sampling is insufficient.

𝑍𝑂
∗ = 𝐼

min
𝑍

𝑍 ∗ 𝑠. 𝑡. 𝑋𝑂 = 𝑋𝑂𝑍

LRR requires that sufficient noiseless data is available in the dictionary A, i.e., only a part of A is 

corrupted. this assumption may be invalid and the robustness of LRR may be depressed in reality.

min
𝑍

𝑍 ∗ 𝑠. 𝑡. 𝑋𝑂 = [𝑋𝑂, 𝑋𝐻]𝑍

𝑋𝑜 is the observed data matrix and 𝑋𝐻 represents the unobserved, hidden data

𝑍𝑂,𝐻
∗ = 𝑍𝑂|𝐻

∗ ; 𝑍𝐻|𝑂
∗



Problem 1 (Noiseless Data)

Problem 2(Corrupted Data)

min
𝑍,𝐸

𝑍 ∗ + 𝜆 𝐸 1 𝑠. 𝑡. 𝑋𝑂 = 𝑋𝑂, 𝑋𝐻 𝑍 + 𝐸

Suppose 𝑍𝑂,𝐻
∗ = 𝑍𝑂|𝐻

∗ ; 𝑍𝐻|𝑂
∗ is the optimal solution (with respect to the variable 𝑍) and 𝑍𝑂|𝐻

∗ is the submatrix 

corresponding to 𝑋𝑜, then our goal is to recover by using only the observed data 𝑋𝑜.

min
𝑍

𝑍 ∗ 𝑠. 𝑡. 𝑋𝑂 = [𝑋𝑂, 𝑋𝐻]𝑍

𝑋𝑂, 𝑋𝐻 = 𝑈Σ𝑉𝑇 = 𝑈Σ 𝑉𝑂; 𝑉𝐻
𝑇 𝑋𝑂 = 𝑈Σ𝑉𝑂

𝑇 𝑋𝐻 = 𝑈Σ𝑉𝐻
𝑇

𝑈Σ𝑉𝑂
𝑇 = 𝑈Σ𝑉𝑇𝑍 𝑉𝑂

𝑇 = 𝑉𝑇𝑍

a unique minimizer [PAMI2013]
𝑍𝑂,𝐻
∗ = 𝑉𝑉𝑂

𝑇 = 𝑉𝑂𝑉𝑂
𝑇; 𝑉𝐻𝑉𝑂

𝑇

min
𝑍

𝑍 ∗ 𝑠. 𝑡. 𝑋𝑂 = [𝑋𝑂, 𝑋𝐻]𝑍



𝑋𝑂 = 𝑋𝑂, 𝑋𝐻 𝑍𝑂,𝐻
∗ = 𝑋𝑂𝑍𝑂|𝐻

∗ + 𝑋𝐻𝑍𝐻|𝑂
∗ = 𝑋𝑂𝑍𝑂|𝐻

∗ + 𝑋𝐻𝑉𝐻𝑉𝑂
𝑇

= 𝑋𝑂𝑍𝑂|𝐻
∗ + 𝑈Σ𝑉𝐻

𝑇𝑉𝐻𝑉𝑂
𝑇 = 𝑋𝑂𝑍𝑂|𝐻

∗ + 𝑈Σ𝑉𝐻
𝑇𝑉𝐻Σ

−1𝑈𝑇𝑋𝑂

𝐿𝐻|𝑂
∗ = 𝑈Σ𝑉𝐻

𝑇𝑉𝐻Σ
−1𝑈𝑇

𝑋𝑂 = 𝑋𝑂𝑍𝑂|𝐻
∗ + 𝐿𝐻|𝑂

∗ 𝑋𝑂

𝑟𝑎𝑛𝑘 𝑍𝑂|𝐻
∗ ≤ 𝑟 and 𝑟𝑎𝑛𝑘 𝐿𝐻|𝑂

∗ ≤ 𝑟

𝑋𝑜 and 𝑋𝐻 are sampled from the same collection of low-rank subspaces

min
𝑍

𝑍 ∗ 𝑠. 𝑡. 𝑋𝑜 = [𝑋𝑜, 𝑋𝐻]𝑍

min
𝑍𝑂|𝐻,𝐿𝐻|𝑂

𝑟𝑎𝑛𝑘 𝑍𝑂|𝐻 + 𝑟𝑎𝑛𝑘(𝐿𝐻|𝑂) 𝑠. 𝑡. 𝑋𝑂 = 𝑋𝑂𝑍𝑂|𝐻 + 𝐿𝐻|𝑂𝑋𝑂

min
𝑍,𝐿

𝑍 ∗ + 𝐿 ∗ 𝑠. 𝑡. 𝑋 = 𝑋𝑍 + 𝐿𝑋



min
𝑍

𝑍 ∗ 𝑠. 𝑡. 𝑋 = 𝑋𝑍 min
𝐿

𝐿 ∗ 𝑠. 𝑡. 𝑋 = 𝐿𝑋𝑍𝑍
∗ 𝐿𝐿

∗

[PAMI2013] 𝑍𝑍
∗

∗ = 𝑟𝑎𝑛𝑘 𝑋 = 𝑟𝑎𝑛𝑘 𝑋𝑇 = 𝐿𝐿
∗

∗ So the strengths of L and Z are balanced naturally.

𝑆𝑖 𝑖=1
10 𝑈𝑖 𝑖=1

10 (𝑈𝑖+1 = 𝑇𝑈𝑖), 𝑇 is a random rotation and 𝑈1 ∈ 𝑅200×10

𝑋𝑂 = [𝑋1, 𝑋2, … , 𝑋10] 𝑋𝑖 = 𝑈𝑖𝐶𝑖 , 1 ≤ 𝑖 ≤ 10 hidden matrix 𝑋𝐻(200 × 50)

Example

min
𝑍

𝑍 ∗ 𝑠. 𝑡. 𝑋𝑂 = [𝑋𝑂, 𝑋𝐻]𝑍 min
𝑍

𝑍 ∗ 𝑠. 𝑡. 𝑋𝑂 = 𝑋𝑂𝑍 min
𝑍,𝐿

𝑍 ∗ + 𝐿 ∗ 𝑠. 𝑡. 𝑋 = 𝑋𝑍 + 𝐿𝑋

Setting



Corrupted Data

min
𝑍,𝐿,𝐸

𝑍 ∗ + 𝐿 ∗ + 𝜆 𝐸 1 𝑠. 𝑡. 𝑋 = 𝑋𝑍 + 𝐿𝑋 + 𝐸

min
𝑍,𝐿,𝐽,𝑆,𝐸

𝐽 ∗ + 𝑆 ∗ + 𝜆 𝐸 1 𝑠. 𝑡. 𝑋 = 𝑋𝑍 + 𝐿𝑋 + 𝐸, 𝑍 = 𝐽, 𝐿 = 𝑆



In summary, let (𝑍∗, 𝐿∗, 𝐸∗) be the minimizer, then 𝑍∗, 𝐿∗ are useful for subspace segmentation 

and feature extraction, respectively.

Subspace Segmentation

Utilize the affinity matrix identified by to define edge weights of an undirected graph, and then 

use Normalized Cuts (NCut) [23] to produce the final segmentation results.



Feature Extraction

𝐿∗ may be useful for feature extraction, and  

experimentally find that 𝐿∗ is able to extract “salient 

features” (i.e., notable features such as the eyes of 

faces) from data.

𝑦 = 𝐿∗𝑥

The salient features correspond to the key 

object parts (e.g., the eyes), which are usually 

discriminative for recognition



LatLRR extends LRR to handle the hidden effects

As a subspace segmentation algorithm, LatLRR outperforms the state-of-the-art 

algorithms for motion segmentation.

Compared to dimension reduction based methods, LatLRR is more robust to noise.

Be empirically able to automatically extract salient features from corrupted data.

Suppose 𝑃 is a low-dimensional projection learnt by using 𝐿∗𝑥 as inputs for some 

dimension reduction methods, the reduced feature vector y of a testing data vector 𝑥 can be 

computed by 𝑦 = 𝑃𝑇𝐿∗𝑥.

Conclusions
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The basic idea is to utilize the supervised information, e.g., the labels of training samples, to 

learn discriminative features 𝐿𝑋 resulting from the LatLRR model.

min
𝑍,𝐿

𝑍 ∗ + 𝐿 ∗ 𝑠. 𝑡. 𝑋 = 𝑋𝑍 + 𝐿𝑋 𝑍∗ = 𝑉𝑋 𝐼 − 𝑆 𝑉𝑋
𝑇 and 𝐿∗ = 𝑈𝑋𝑆𝑈𝑋

𝑇
complete solutions

𝑆𝑉𝐷 𝑋 = 𝑈𝑋Σ𝑋𝑈𝑋
𝑇

Theorem

𝑆 is any block-diagonal matrix that satisfies two constraints:

1) its blocks are compatible with Σ𝑋, i.e., if (Σ𝑋)𝑖𝑖≠ (Σ𝑋)𝑗𝑗, then 𝑆𝑖𝑗 = 0

2) both 𝑆 and 𝐼 − 𝑆 are positive semidefinite.

Note that 𝑆 can usually be chosen as diagonal with diagonal entries being any number between 0 and 1.



min
𝐿,𝑊

෍
𝑖=1

𝑚

𝜑 ℎ𝑖 , 𝑓 𝐿𝑥𝑖 ,𝑊 + 𝛼||𝑊||𝐹
2

𝑠. 𝑡. 𝐿 = 𝑈𝑋𝑆𝑈𝑋
𝑇

𝑈𝑋 ∈ 𝑅𝑑×𝑟 𝑆 ∈ 𝑅𝑟×𝑟

𝑓 𝑥,𝑊 = 𝑊𝑥, 𝑊 ∈ 𝑅𝑐×𝑑

min
𝑊,𝐿

𝐻 −𝑊𝐿𝑋 𝐹
2 + 𝛼||𝑊||𝐹

2

𝑠. 𝑡. 𝐿 = 𝑈𝑋𝑆𝑈𝑋
𝑇

𝐻 = ℎ1, ℎ2, … , ℎ𝑛 ∈ 𝑅𝑐×𝑚

ℎ𝑖 = 0,0, … , 1, … , 0,0 𝑇 ∈ 𝑅𝑐

1) the singular values of the data matrix 𝑋 are usually distinct from each other, i.e.

(Σ𝑋)𝑖𝑖≠ (Σ𝑋)𝑗𝑗, when 𝑆𝑖𝑗 = 0.

2) since only focus on learning the discriminative features, the constraint that 𝐼 − 𝑆 is 

positive semidefinite is not necessary, so, only need to bound 𝑆𝑖𝑖 > 0.

solve



diag Λ = (𝑆11, 𝑆22, … , 𝑆𝑟𝑟 , 0,0, … , 0) ∈ 𝑅𝑑 Λ ∈ 𝑅𝑑×𝑑

𝐿 = 𝑈𝑋𝑆𝑈𝑋
𝑇 = 𝑈Λ𝑈𝑇

𝐻 −𝑊𝐿𝑋 𝐹
2 + 𝛼||𝑊||𝐹

2 = 𝐻 −𝑊𝑈Λ𝑈𝑇𝑈Σ𝑉𝑇
𝐹
2 + 𝛼||𝑊||𝐹

2

= 𝐻𝑉 −𝑊𝑈ΛΣ 𝐹
2 + 𝛼||𝑊||𝐹

2 = 𝐻𝑉 −𝑊𝑈ΛΣ 𝐹
2 + 𝛼||𝑊𝑈||𝐹

2

𝑈𝑈𝑇 = 𝑈𝑇𝑈 = 𝑉𝑉𝑇 = 𝐼

෩𝐻 = 𝐻𝑉 ෩𝑊 = 𝑊𝑈

𝐻 −𝑊𝐿𝑋 𝐹
2 + 𝛼||𝑊||𝐹

2 = ෩𝐻 − ෩𝑊ΛΣ
𝐹

2
+ 𝛼|| ෩𝑊||𝐹

2

=෍
𝑖=1

𝑟
෩𝐻𝑖 − 𝑆𝑖𝑖𝜎𝑖 ෩𝑊𝑖 2

2
+෍

𝑖=𝑟+1

𝑚
෩𝐻𝑖 2

2
+ 𝛼෍

𝑖=1

𝑟

|| ෩𝑊𝑖||2
2 + 𝛼෍

𝑖=𝑟+1

𝑚

|| ෩𝑊𝑖||2
2

෩𝑊𝑖 = 0, 𝑖 = 𝑟 + 1,… ,𝑚



min
𝑆11,…,𝑆𝑟𝑟
෩𝑊1,…, ෩𝑊𝑟

෍
𝑖=1

𝑟
෩𝐻𝑖 − 𝑆𝑖𝑖𝜎𝑖 ෩𝑊𝑖 2

2
+ 𝛼|| ෩𝑊𝑖||2

2 s. t. 𝑆𝑖𝑖 ≥ 0, 𝑖 = 1,2, … , 𝑟

෍
𝑖=1

𝑟

𝑆𝑖𝑖𝜎𝑖 = 𝑡෍
𝑖=1

𝑟

𝑆𝑖𝑖 = 𝑡 𝑔 = 𝑆11𝜎1, … , 𝑆𝑟𝑟𝜎𝑟
𝑇 𝑄 = 𝑆11𝜎1 ෩𝑊1, … , 𝑆𝑟𝑟𝜎𝑟 ෩𝑊𝑟

min
𝑔,𝑄

෍
𝑖=1

𝑟
෩𝐻𝑖 − 𝑄𝑖 2

2
+

𝛼

𝑔𝑖
2 ||𝑄𝑖||2

2 s. t.෍
𝑖=1

𝑟

𝑔𝑖 = 𝑡, 𝑔𝑖≥ 0, 𝑖 = 1,2, … , 𝑟

𝑄𝑖 = min
𝑄𝑖

෩𝐻𝑖 − 𝑄𝑖 2

2
+

𝛼

𝑔𝑖
2 ||𝑄𝑖||2

2 =
𝑔𝑖
2

𝑔𝑖
2 + 𝛼

෩𝐻𝑖 𝑖 = 1,2, … , 𝑟fix g update of Q

fix Q update of g argmin
𝑔𝑖

෍
𝑖=1

𝑟 𝛼

𝑔𝑖
2 ||𝑄𝑖||2

2 s. t.෍
𝑖=1

𝑟

𝑔𝑖 = 𝑡, 𝑔𝑖 ≥ 0, 𝑖 = 1,2, … , 𝑟



𝐿 𝑔, 𝜏 =෍
𝑖=1

𝑟 𝛼

𝑔𝑖
2 ||𝑄𝑖||2

2 + 𝜏 ෍
𝑖=1

𝑟

𝑔𝑖 − 𝑡

𝜕𝐿

𝑔𝑖
= −

2𝛼 𝑄𝑖 2

2

𝑔𝑖
3 + 𝜏 = 0 ෍

𝑖=1

𝑟

𝑔𝑖 = 𝜏 𝑔𝑖 =
𝑡||𝑄𝑖||2

2/3

σ𝑖=1
𝑟 ||𝑄𝑖||2

2/3

𝐿 = 𝑈Λ𝑈𝑇 Λ𝑖𝑖 =
𝑔𝑖𝑖
𝜎𝑖

(𝑖 = 1,… , 𝑟) 𝑍 = 𝐿𝑋෩𝑊𝑖 =
𝑄𝑖
𝑔𝑖

[Neural Comput. 2015] proposed denoise X first, apply the noiseless LRR or the LatLRR to the denoised data.

min
𝑍,𝐿,𝐸

𝑍 ∗ + 𝐿 ∗ + 𝜆 𝐸 1 𝑠. 𝑡. 𝑋 − 𝐸 = (𝑋 − 𝐸)𝑍 + 𝐿(𝑋 − 𝐸)

[Neural Comput. 2015] proved solving the above problem is equivalent to denoising X with the robust PCA 

first to obtain (A, E), and then solving noiseless LatLRR with X replaced by A.



Let the pair (𝐴∗, 𝐸∗) be any optimal solution to the robust PCA problem. Then, the new noisy 

LatLRR model has minimizers (𝐴∗, 𝐿∗, 𝐸∗) where       𝑍∗ = 𝑉𝐴 𝐼 − 𝑆 𝑉𝐴
𝑇 𝐿∗ = 𝑈𝐴𝑆𝑈𝐴

𝑇

min
𝐴,𝐸

𝑋 ∗ + 𝛾 𝐸 1 𝑠. 𝑡. 𝐷 = 𝐴 + 𝐸Robust PCA

1)   𝑋𝑡𝑟 → 𝐴𝑡𝑟 → 𝑈𝑡𝑟Σ𝑡𝑟𝑉𝑡𝑟
𝑇 𝐴𝑡𝑠 → 𝑈𝑡𝑟𝑈𝑡𝑟

𝑇 𝑋𝑡𝑠 2) 𝑍𝑡𝑟 𝑍𝑡𝑠 𝑊

min
𝐿,𝑊

෍
𝑖=1

𝑚

𝜑 ℎ𝑖 , 𝑓 𝐿𝑥𝑖 ,𝑊 + 𝛼||𝑊||𝐹
2

𝑠. 𝑡. 𝐿 = 𝑈𝑋𝑆𝑈𝑋
𝑇

min
𝑍,𝐿

𝑍 ∗ + 𝐿 ∗ 𝑠. 𝑡. 𝑋 = 𝑋𝑍 + 𝐿𝑋

Active Learning



Cold start ?
Active Learning via 

Transductive Experimental Design 

𝑋: [𝑥1, … , 𝑥𝑚]
𝑇∈ ℝ𝑚×𝑑, 𝑋 = 𝑚 V: [𝑣1, … , 𝑣𝑛]

𝑇∈ ℝ𝑛×𝑑, 𝑉 = 𝑛

The goal of experimental design is to find a set of experiments 𝑥𝑖 that together are maximally 

informative.

𝐟 = 𝑓 𝑣1, … , 𝑓 𝑣𝑛 be the function values on all the available data V, the predictive error 𝐟 − መ𝐟 has the 

covariance matrix 𝜎2𝐶f

Limited budget



max
𝑋𝑜

𝑇𝑟 𝑉𝑜𝑋𝑜
𝑇 𝑋𝑜𝑋𝑜

𝑇 + 𝜇𝐼 −1 𝑋𝑜𝑉𝑜
𝑇

𝑋𝑜 = (𝐿𝑋)𝑇 𝑉𝑜 = (𝐿𝑉)𝑇 𝐿 = 𝑈𝑆𝑈𝑇

max
𝑋,𝐿

𝑇𝑟 𝑉𝑇𝐿𝑇𝐿𝑋 𝑋𝑇𝐿𝑇𝐿𝑋 + 𝜇𝐼 −1 𝑋𝑇𝐿𝑇𝐿𝑉 𝑠. 𝑡. 𝐿 = 𝑈𝑆𝑈𝑇

= max
𝑋,𝑆

𝑇𝑟 𝑉𝑇𝑈𝑆2𝑈𝑇𝑋 𝑋𝑇𝑈𝑆2𝑈𝑇𝑋 + 𝜇𝐼 −1 𝑋𝑇𝑈𝑆2𝑈𝑇𝑉

𝑉 ∈ 𝑅𝑑×𝑛 𝑋 ∈ 𝑅𝑑×𝑚

𝑋 = 𝑉𝑃 𝑠. 𝑡. 𝑋 ∈ 𝑅𝑚×𝑛 ෍

𝑖

𝑃𝑖𝑗 = 1 ෍

𝑗

𝑃𝑖𝑗 ≤ 1 ෍

𝑖,𝑗

𝑃𝑖𝑗 = 𝑚

max
𝑃,𝑆

𝑇𝑟 𝑉𝑇𝑈𝑆2𝑈𝑇𝑉𝑃 𝑃𝑇𝑉𝑇𝑈𝑆2𝑈𝑇𝑉𝑃 + 𝜇𝐼 −1 𝑃𝑇𝑉𝑇𝑈𝑆2𝑈𝑇𝑉 𝑠. 𝑡. 𝑃, 𝑆



𝐿 𝑋, 𝐴 = 𝑉 − 𝐴𝑋 𝐹
2 + 𝜇Tr 𝐴𝐴𝑇 = Tr 𝑉 − 𝐴𝑋 𝑉 − 𝐴𝑋 𝑇 + 𝜇Tr 𝐴𝐴𝑇

= Tr 𝑉𝑉𝑇 − 𝐴𝑋𝑉𝑇 − 𝑉𝑋𝑇𝐴𝑇 + 𝐴𝑋𝑋𝑇𝐴𝑇 + 𝜇𝐴𝐴𝑇

= Tr 𝑉𝑉𝑇 − 𝑇𝑟 𝐴𝑋𝑉𝑇 + 𝑉𝑋𝑇𝐴𝑇 − 𝐴 𝑋𝑋𝑇 + 𝜇𝐼 𝐴𝑇

𝜕𝐿(𝑋, 𝐴)

𝐴
= 0 𝐴∗ = 𝑉𝑋𝑇 𝑋𝑋𝑇 + 𝜇𝐼 −1



min
𝐴,𝑃

𝑉𝑜 − 𝐴𝑉𝑜𝑃 𝐹
2 + 𝜇 𝐴 𝐹

2 = min
𝐴,𝑃

𝑉𝑇𝐿𝑇 − 𝐴𝑉𝑇𝐿𝑇𝑃 𝐹
2 + 𝜇 𝐴 𝐹

2 , 𝑠. 𝑡. 𝐿 = 𝑈𝑆𝑈𝑇 𝑉 = 𝑈Σ𝑉𝑣
𝑇

= min
𝐴,𝑃,𝑆

𝑉𝑣Σ𝑆𝑈
𝑇 − 𝐴𝑉Σ𝑆𝑈𝑇𝑃 𝐹

2 + 𝜇 𝐴 𝐹
2

𝐿 = 𝑈𝑆𝑈𝑇 = 𝑈Λ𝑈𝑇 diag Λ = (𝑆11, 𝑆22, … , 𝑆𝑟𝑟 , 0,0, … , 0) ∈ 𝑅𝑑 Λ ∈ 𝑅𝑑×𝑑

fix 𝑃, 𝑆 update 𝐴 fix 𝐴, 𝑆 update 𝑃

fix 𝑃, 𝐴 update 𝑆



Early Active Learning via Robust Representation and Structured Sparsity

IJCAI 2013

min
𝐴,𝐵

σ𝑖=1
𝑛 𝑥𝑖 − 𝐵𝑎𝑖 2

2 + 𝛾 𝑎𝑖 2
2 𝑠. 𝑡. 𝐴 = 𝑎1, … , 𝑎𝑛 ∈ 𝑅𝑚×𝑛, 𝐵 ⊂ 𝑋, 𝐵 = 𝑚

The key idea of TED is to select the samples that can best represent the whole data using a linear 

representation.

The TED objective minimizes the least square error, hence it is sensitive to the data outliers. To 

solve these two deficiencies, we formulate the early active learning problem using the structured 

sparsity-inducing norms and propose a new robust formulation with efficient optimization algorithm.

min
𝐴,𝐵

෍
𝑖=1

𝑛

𝑥𝑖 − 𝑋𝑎𝑖 2
2 + 𝛾 𝑎𝑖 2

2 𝑠. 𝑡. 𝐴 = 𝑎1, … , 𝑎𝑛 ∈ 𝑅𝑛×𝑛 𝐴 2.0

min
𝐴

෍
𝑖=1

𝑛

𝑥𝑖 − 𝑋𝑎𝑖 2
2 + 𝛾 𝐴 2,0

𝐴 2,1 is the minimum convex hull of 𝐴 2,0, and when 𝐴 is row-sparse enough, one can always 

minimize 𝐴 2,1 to obtain the same result of minimizing 𝐴 2,0.



min
𝐴

෍
𝑖=1

𝑛

𝑥𝑖 − 𝑋𝑎𝑖 2
2 + 𝛾 𝐴 2,1 = min

𝐴
𝑋 − 𝑋𝐴 𝑇

2
2 + 𝛾 𝐴 2,1

𝐽 = min
𝐴

𝑋 − 𝑋𝐴 𝑇
2,1+𝛾 𝐴 2,1

L1-norm is imposed among data points and the L2-norm is used for features



min
𝑍,𝐸

||𝑍||∗ + 𝜆 𝐸 2,1 s. t. 𝑋 = 𝑋𝑍 + 𝐸

min
𝑍

||𝑍||∗ s. t. 𝑋 = 𝑋𝑍

min
𝑍

𝜆 𝑋 − 𝑋𝑍 2,1 + ||𝑍||∗

min
𝐴

෍
𝑖=1

𝑛

𝑥𝑖 − 𝑋𝑎𝑖 2
2 + 𝛾 𝐴 2,1 = min

𝐴
𝑋 − 𝑋𝐴 𝑇

2
2 + 𝛾 𝐴 2,1

𝐽 = min
𝐴

𝑋 − 𝑋𝐴 𝑇
2,1+𝛾 𝐴 2,1

IJCAI 2013

ICML 2010

SIGIR 08



𝐽 = min
𝐴

𝑋𝑜 − 𝑋𝑜𝐴
𝑇

2,1+𝛾 𝐴 2,1 𝑋𝑜 ∈ 𝑅𝑑×𝑛 𝐴 ∈ 𝑅𝑛×𝑛

𝑋𝑜 = 𝐿𝑋 𝐿 = 𝑈𝑆𝑈𝑇 = 𝑈Λ𝑈𝑇

min
𝐴

𝐿𝑋 − 𝐿𝑋𝐴 𝑇
2,1+𝛾 𝐴 2,1 = min

𝐴,𝑆
𝑈𝑆Σ𝑉𝑇 − 𝑈𝑆Σ𝑉𝑇𝐴 𝑇

2,1+𝛾 𝐴 2,1

1) (Σ𝑋)𝑖𝑖≠ (Σ𝑋)𝑗𝑗, when 𝑆𝑖𝑗 = 0.    2)  𝑆 and 𝐼 − 𝑆 are positive semidefinite 

since only focus on learning the discriminative features, the constraint that 𝐼 − 𝑆 is positive 

semidefinite is not necessary, so, only need to bound 𝑆𝑖𝑖 > 0.

Kernel Extension 𝐽 = min
𝐴

𝜙(𝑋𝑜) − 𝜙(𝑋𝑜)𝐴
𝑇

2,1+𝛾 𝐴 2,1

= min
𝐴

𝜙(𝑈𝑆Σ𝑉𝑇) − 𝜙(𝑈𝑆Σ𝑉𝑇)𝐴 𝑇
2,1+𝛾 𝐴 2,1

min
𝐴,𝑃,𝑆

𝑉𝑣Σ𝑆𝑈
𝑇 − 𝐴𝑉Σ𝑆𝑈𝑇𝑃 𝐹

2 + 𝜇 𝐴 𝐹
2


